linux-surface/kernel/Documentation/cputopology.txt

160 lines
5.6 KiB
Plaintext
Raw Normal View History

2017-09-05 02:31:27 +00:00
===========================================
How CPU topology info is exported via sysfs
===========================================
2017-08-10 13:25:24 +00:00
Export CPU topology info via sysfs. Items (attributes) are similar
to /proc/cpuinfo output of some architectures:
1) /sys/devices/system/cpu/cpuX/topology/physical_package_id:
physical package id of cpuX. Typically corresponds to a physical
socket number, but the actual value is architecture and platform
dependent.
2) /sys/devices/system/cpu/cpuX/topology/core_id:
the CPU core ID of cpuX. Typically it is the hardware platform's
identifier (rather than the kernel's). The actual value is
architecture and platform dependent.
3) /sys/devices/system/cpu/cpuX/topology/book_id:
the book ID of cpuX. Typically it is the hardware platform's
identifier (rather than the kernel's). The actual value is
architecture and platform dependent.
4) /sys/devices/system/cpu/cpuX/topology/drawer_id:
the drawer ID of cpuX. Typically it is the hardware platform's
identifier (rather than the kernel's). The actual value is
architecture and platform dependent.
5) /sys/devices/system/cpu/cpuX/topology/thread_siblings:
internal kernel map of cpuX's hardware threads within the same
core as cpuX.
6) /sys/devices/system/cpu/cpuX/topology/thread_siblings_list:
human-readable list of cpuX's hardware threads within the same
core as cpuX.
7) /sys/devices/system/cpu/cpuX/topology/core_siblings:
internal kernel map of cpuX's hardware threads within the same
physical_package_id.
8) /sys/devices/system/cpu/cpuX/topology/core_siblings_list:
human-readable list of cpuX's hardware threads within the same
physical_package_id.
9) /sys/devices/system/cpu/cpuX/topology/book_siblings:
internal kernel map of cpuX's hardware threads within the same
book_id.
10) /sys/devices/system/cpu/cpuX/topology/book_siblings_list:
human-readable list of cpuX's hardware threads within the same
book_id.
11) /sys/devices/system/cpu/cpuX/topology/drawer_siblings:
internal kernel map of cpuX's hardware threads within the same
drawer_id.
12) /sys/devices/system/cpu/cpuX/topology/drawer_siblings_list:
human-readable list of cpuX's hardware threads within the same
drawer_id.
To implement it in an architecture-neutral way, a new source file,
drivers/base/topology.c, is to export the 6 to 12 attributes. The book
and drawer related sysfs files will only be created if CONFIG_SCHED_BOOK
and CONFIG_SCHED_DRAWER are selected.
CONFIG_SCHED_BOOK and CONFIG_DRAWER are currently only used on s390, where
they reflect the cpu and cache hierarchy.
For an architecture to support this feature, it must define some of
2017-09-05 02:31:27 +00:00
these macros in include/asm-XXX/topology.h::
#define topology_physical_package_id(cpu)
#define topology_core_id(cpu)
#define topology_book_id(cpu)
#define topology_drawer_id(cpu)
#define topology_sibling_cpumask(cpu)
#define topology_core_cpumask(cpu)
#define topology_book_cpumask(cpu)
#define topology_drawer_cpumask(cpu)
The type of ``**_id macros`` is int.
The type of ``**_cpumask macros`` is ``(const) struct cpumask *``. The latter
correspond with appropriate ``**_siblings`` sysfs attributes (except for
2017-08-10 13:25:24 +00:00
topology_sibling_cpumask() which corresponds with thread_siblings).
To be consistent on all architectures, include/linux/topology.h
provides default definitions for any of the above macros that are
not defined by include/asm-XXX/topology.h:
2017-09-05 02:31:27 +00:00
2017-08-10 13:25:24 +00:00
1) physical_package_id: -1
2) core_id: 0
3) sibling_cpumask: just the given CPU
4) core_cpumask: just the given CPU
For architectures that don't support books (CONFIG_SCHED_BOOK) there are no
default definitions for topology_book_id() and topology_book_cpumask().
For architectures that don't support drawers (CONFIG_SCHED_DRAWER) there are
no default definitions for topology_drawer_id() and topology_drawer_cpumask().
Additionally, CPU topology information is provided under
/sys/devices/system/cpu and includes these files. The internal
source for the output is in brackets ("[]").
2017-09-05 02:31:27 +00:00
=========== ==========================================================
2017-08-10 13:25:24 +00:00
kernel_max: the maximum CPU index allowed by the kernel configuration.
[NR_CPUS-1]
offline: CPUs that are not online because they have been
HOTPLUGGED off (see cpu-hotplug.txt) or exceed the limit
of CPUs allowed by the kernel configuration (kernel_max
above). [~cpu_online_mask + cpus >= NR_CPUS]
online: CPUs that are online and being scheduled [cpu_online_mask]
possible: CPUs that have been allocated resources and can be
brought online if they are present. [cpu_possible_mask]
present: CPUs that have been identified as being present in the
system. [cpu_present_mask]
2017-09-05 02:31:27 +00:00
=========== ==========================================================
2017-08-10 13:25:24 +00:00
The format for the above output is compatible with cpulist_parse()
[see <linux/cpumask.h>]. Some examples follow.
In this example, there are 64 CPUs in the system but cpus 32-63 exceed
the kernel max which is limited to 0..31 by the NR_CPUS config option
being 32. Note also that CPUs 2 and 4-31 are not online but could be
2017-09-05 02:31:27 +00:00
brought online as they are both present and possible::
2017-08-10 13:25:24 +00:00
kernel_max: 31
offline: 2,4-31,32-63
online: 0-1,3
possible: 0-31
present: 0-31
In this example, the NR_CPUS config option is 128, but the kernel was
started with possible_cpus=144. There are 4 CPUs in the system and cpu2
was manually taken offline (and is the only CPU that can be brought
2017-09-05 02:31:27 +00:00
online.)::
2017-08-10 13:25:24 +00:00
kernel_max: 127
offline: 2,4-127,128-143
online: 0-1,3
possible: 0-127
present: 0-3
See cpu-hotplug.txt for the possible_cpus=NUM kernel start parameter
as well as more information on the various cpumasks.