ladybird/Kernel/StdLib.cpp
Daniel Bertalan 1faffc2192 Kernel: Introduce workaround to make LTO builds work with Clang
LLD fails to define the _GLOBAL_OFFSET_TABLE_ symbol if all inputs to it
are LLVM bitcode files (i.e. those used for LTO). To allow the kernel to
be built with ThinLTO, the workaround suggested in the original LLVM bug
report (<https://bugs.llvm.org/show_bug.cgi?id=39634>) is added in this
commit.
2021-10-17 17:09:58 +01:00

316 lines
10 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <AK/MemMem.h>
#include <AK/String.h>
#include <AK/Types.h>
#include <Kernel/Arch/SmapDisabler.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/StdLib.h>
Kernel::KResultOr<NonnullOwnPtr<Kernel::KString>> try_copy_kstring_from_user(Userspace<const char*> user_str, size_t user_str_size)
{
bool is_user = Kernel::Memory::is_user_range(VirtualAddress(user_str), user_str_size);
if (!is_user)
return EFAULT;
Kernel::SmapDisabler disabler;
void* fault_at;
ssize_t length = Kernel::safe_strnlen(user_str.unsafe_userspace_ptr(), user_str_size, fault_at);
if (length < 0) {
dbgln("copy_kstring_from_user({:p}, {}) failed at {} (strnlen)", static_cast<const void*>(user_str.unsafe_userspace_ptr()), user_str_size, VirtualAddress { fault_at });
return EFAULT;
}
char* buffer;
auto new_string = TRY(Kernel::KString::try_create_uninitialized(length, buffer));
buffer[length] = '\0';
if (length == 0)
return new_string;
if (!Kernel::safe_memcpy(buffer, user_str.unsafe_userspace_ptr(), (size_t)length, fault_at)) {
dbgln("copy_kstring_from_user({:p}, {}) failed at {} (memcpy)", static_cast<const void*>(user_str.unsafe_userspace_ptr()), user_str_size, VirtualAddress { fault_at });
return EFAULT;
}
return new_string;
}
KResultOr<Time> copy_time_from_user(timespec const* ts_user)
{
timespec ts {};
TRY(copy_from_user(&ts, ts_user, sizeof(timespec)));
return Time::from_timespec(ts);
}
KResultOr<Time> copy_time_from_user(timeval const* tv_user)
{
timeval tv {};
TRY(copy_from_user(&tv, tv_user, sizeof(timeval)));
return Time::from_timeval(tv);
}
template<>
KResultOr<Time> copy_time_from_user<const timeval>(Userspace<timeval const*> src) { return copy_time_from_user(src.unsafe_userspace_ptr()); }
template<>
KResultOr<Time> copy_time_from_user<timeval>(Userspace<timeval*> src) { return copy_time_from_user(src.unsafe_userspace_ptr()); }
template<>
KResultOr<Time> copy_time_from_user<const timespec>(Userspace<timespec const*> src) { return copy_time_from_user(src.unsafe_userspace_ptr()); }
template<>
KResultOr<Time> copy_time_from_user<timespec>(Userspace<timespec*> src) { return copy_time_from_user(src.unsafe_userspace_ptr()); }
Optional<u32> user_atomic_fetch_add_relaxed(volatile u32* var, u32 val)
{
if (FlatPtr(var) & 3)
return {}; // not aligned!
bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
if (!is_user)
return {};
Kernel::SmapDisabler disabler;
return Kernel::safe_atomic_fetch_add_relaxed(var, val);
}
Optional<u32> user_atomic_exchange_relaxed(volatile u32* var, u32 val)
{
if (FlatPtr(var) & 3)
return {}; // not aligned!
bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
if (!is_user)
return {};
Kernel::SmapDisabler disabler;
return Kernel::safe_atomic_exchange_relaxed(var, val);
}
Optional<u32> user_atomic_load_relaxed(volatile u32* var)
{
if (FlatPtr(var) & 3)
return {}; // not aligned!
bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
if (!is_user)
return {};
Kernel::SmapDisabler disabler;
return Kernel::safe_atomic_load_relaxed(var);
}
bool user_atomic_store_relaxed(volatile u32* var, u32 val)
{
if (FlatPtr(var) & 3)
return false; // not aligned!
bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
if (!is_user)
return false;
Kernel::SmapDisabler disabler;
return Kernel::safe_atomic_store_relaxed(var, val);
}
Optional<bool> user_atomic_compare_exchange_relaxed(volatile u32* var, u32& expected, u32 val)
{
if (FlatPtr(var) & 3)
return {}; // not aligned!
VERIFY(!Kernel::Memory::is_user_range(VirtualAddress(&expected), sizeof(expected)));
bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
if (!is_user)
return {};
Kernel::SmapDisabler disabler;
return Kernel::safe_atomic_compare_exchange_relaxed(var, expected, val);
}
Optional<u32> user_atomic_fetch_and_relaxed(volatile u32* var, u32 val)
{
if (FlatPtr(var) & 3)
return {}; // not aligned!
bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
if (!is_user)
return {};
Kernel::SmapDisabler disabler;
return Kernel::safe_atomic_fetch_and_relaxed(var, val);
}
Optional<u32> user_atomic_fetch_and_not_relaxed(volatile u32* var, u32 val)
{
if (FlatPtr(var) & 3)
return {}; // not aligned!
bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
if (!is_user)
return {};
Kernel::SmapDisabler disabler;
return Kernel::safe_atomic_fetch_and_not_relaxed(var, val);
}
Optional<u32> user_atomic_fetch_or_relaxed(volatile u32* var, u32 val)
{
if (FlatPtr(var) & 3)
return {}; // not aligned!
bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
if (!is_user)
return {};
Kernel::SmapDisabler disabler;
return Kernel::safe_atomic_fetch_or_relaxed(var, val);
}
Optional<u32> user_atomic_fetch_xor_relaxed(volatile u32* var, u32 val)
{
if (FlatPtr(var) & 3)
return {}; // not aligned!
bool is_user = Kernel::Memory::is_user_range(VirtualAddress(FlatPtr(var)), sizeof(*var));
if (!is_user)
return {};
Kernel::SmapDisabler disabler;
return Kernel::safe_atomic_fetch_xor_relaxed(var, val);
}
KResult copy_to_user(void* dest_ptr, void const* src_ptr, size_t n)
{
if (!Kernel::Memory::is_user_range(VirtualAddress(dest_ptr), n))
return EFAULT;
VERIFY(!Kernel::Memory::is_user_range(VirtualAddress(src_ptr), n));
Kernel::SmapDisabler disabler;
void* fault_at;
if (!Kernel::safe_memcpy(dest_ptr, src_ptr, n, fault_at)) {
VERIFY(VirtualAddress(fault_at) >= VirtualAddress(dest_ptr) && VirtualAddress(fault_at) <= VirtualAddress((FlatPtr)dest_ptr + n));
dbgln("copy_to_user({:p}, {:p}, {}) failed at {}", dest_ptr, src_ptr, n, VirtualAddress { fault_at });
return EFAULT;
}
return KSuccess;
}
KResult copy_from_user(void* dest_ptr, void const* src_ptr, size_t n)
{
if (!Kernel::Memory::is_user_range(VirtualAddress(src_ptr), n))
return EFAULT;
VERIFY(!Kernel::Memory::is_user_range(VirtualAddress(dest_ptr), n));
Kernel::SmapDisabler disabler;
void* fault_at;
if (!Kernel::safe_memcpy(dest_ptr, src_ptr, n, fault_at)) {
VERIFY(VirtualAddress(fault_at) >= VirtualAddress(src_ptr) && VirtualAddress(fault_at) <= VirtualAddress((FlatPtr)src_ptr + n));
dbgln("copy_from_user({:p}, {:p}, {}) failed at {}", dest_ptr, src_ptr, n, VirtualAddress { fault_at });
return EFAULT;
}
return KSuccess;
}
KResult memset_user(void* dest_ptr, int c, size_t n)
{
bool is_user = Kernel::Memory::is_user_range(VirtualAddress(dest_ptr), n);
if (!is_user)
return EFAULT;
Kernel::SmapDisabler disabler;
void* fault_at;
if (!Kernel::safe_memset(dest_ptr, c, n, fault_at)) {
dbgln("memset_user({:p}, {}, {}) failed at {}", dest_ptr, c, n, VirtualAddress { fault_at });
return EFAULT;
}
return KSuccess;
}
#if defined(__clang__) && defined(ENABLE_KERNEL_LTO)
// Due to a chicken-and-egg situation, certain linker-defined symbols that are added on-demand (like the GOT)
// need to be present before LTO bitcode files are compiled. And since we don't link to any native object files,
// the linker does not know that _GLOBAL_OFFSET_TABLE_ is needed, so it doesn't define it, so linking as a PIE fails.
// See https://bugs.llvm.org/show_bug.cgi?id=39634
FlatPtr missing_got_workaround()
{
extern volatile FlatPtr _GLOBAL_OFFSET_TABLE_;
return _GLOBAL_OFFSET_TABLE_;
}
#endif
extern "C" {
const void* memmem(const void* haystack, size_t haystack_length, const void* needle, size_t needle_length)
{
return AK::memmem(haystack, haystack_length, needle, needle_length);
}
size_t strnlen(const char* str, size_t maxlen)
{
size_t len = 0;
for (; len < maxlen && *str; str++)
len++;
return len;
}
int strcmp(const char* s1, const char* s2)
{
for (; *s1 == *s2; ++s1, ++s2) {
if (*s1 == 0)
return 0;
}
return *(const u8*)s1 < *(const u8*)s2 ? -1 : 1;
}
int memcmp(const void* v1, const void* v2, size_t n)
{
auto* s1 = (const u8*)v1;
auto* s2 = (const u8*)v2;
while (n-- > 0) {
if (*s1++ != *s2++)
return s1[-1] < s2[-1] ? -1 : 1;
}
return 0;
}
int strncmp(const char* s1, const char* s2, size_t n)
{
if (!n)
return 0;
do {
if (*s1 != *s2++)
return *(const unsigned char*)s1 - *(const unsigned char*)--s2;
if (*s1++ == 0)
break;
} while (--n);
return 0;
}
char* strstr(const char* haystack, const char* needle)
{
char nch;
char hch;
if ((nch = *needle++) != 0) {
size_t len = strlen(needle);
do {
do {
if ((hch = *haystack++) == 0)
return nullptr;
} while (hch != nch);
} while (strncmp(haystack, needle, len) != 0);
--haystack;
}
return const_cast<char*>(haystack);
}
// Functions that are automatically called by the C++ compiler.
// Declare them first, to tell the silly compiler that they are indeed being used.
[[noreturn]] void __stack_chk_fail() __attribute__((used));
[[noreturn]] void __stack_chk_fail_local() __attribute__((used));
extern "C" int __cxa_atexit(void (*)(void*), void*, void*);
[[noreturn]] void __cxa_pure_virtual();
[[noreturn]] void __stack_chk_fail()
{
VERIFY_NOT_REACHED();
}
[[noreturn]] void __stack_chk_fail_local()
{
VERIFY_NOT_REACHED();
}
extern "C" int __cxa_atexit(void (*)(void*), void*, void*)
{
VERIFY_NOT_REACHED();
return 0;
}
[[noreturn]] void __cxa_pure_virtual()
{
VERIFY_NOT_REACHED();
}
}