ladybird/Kernel/TimerQueue.cpp
Brian Gianforcaro fc91eb365d Kernel: Do not cancel stale timers when servicing sys$alarm
The sys$alarm() syscall has logic to cache a m_alarm_timer to avoid
allocating a new timer for every call to alarm. Unfortunately that
logic was broken, and there were conditions in which we could have
a timer allocated, but it was no longer on the timer queue, and we
would attempt to cancel that timer again resulting in an infinite
loop waiting for the timers callback to fire.

To fix this, we need to track if a timer is currently in use or not,
allowing us to avoid attempting to cancel inactive timers.

Luke and Tom did the initial investigation, I just happened to have
time to write a repro and attempt a fix, so I'm adding them as the
as co-authors of this commit.

Co-authored-by: Luke <luke.wilde@live.co.uk>
Co-authored-by: Tom <tomut@yahoo.com>
2021-08-03 18:44:01 +02:00

308 lines
9.2 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Singleton.h>
#include <AK/Time.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Sections.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>
namespace Kernel {
static AK::Singleton<TimerQueue> s_the;
static SpinLock<u8> g_timerqueue_lock;
Time Timer::remaining() const
{
return m_remaining;
}
Time Timer::now(bool is_firing) const
{
// NOTE: If is_firing is true then TimePrecision::Precise isn't really useful here.
// We already have a quite precise time stamp because we just updated the time in the
// interrupt handler. In those cases, just use coarse timestamps.
auto clock_id = m_clock_id;
if (is_firing) {
switch (clock_id) {
case CLOCK_MONOTONIC:
clock_id = CLOCK_MONOTONIC_COARSE;
break;
case CLOCK_MONOTONIC_RAW:
// TODO: use a special CLOCK_MONOTONIC_RAW_COARSE like mechanism here
break;
case CLOCK_REALTIME:
clock_id = CLOCK_REALTIME_COARSE;
break;
default:
break;
}
}
return TimeManagement::the().current_time(clock_id);
}
TimerQueue& TimerQueue::the()
{
return *s_the;
}
UNMAP_AFTER_INIT TimerQueue::TimerQueue()
{
m_ticks_per_second = TimeManagement::the().ticks_per_second();
}
bool TimerQueue::add_timer_without_id(NonnullRefPtr<Timer> timer, clockid_t clock_id, const Time& deadline, Function<void()>&& callback)
{
if (deadline <= TimeManagement::the().current_time(clock_id))
return false;
// Because timer handlers can execute on any processor and there is
// a race between executing a timer handler and cancel_timer() this
// *must* be a RefPtr<Timer>. Otherwise calling cancel_timer() could
// inadvertently cancel another timer that has been created between
// returning from the timer handler and a call to cancel_timer().
timer->setup(clock_id, deadline, move(callback));
ScopedSpinLock lock(g_timerqueue_lock);
timer->m_id = 0; // Don't generate a timer id
add_timer_locked(move(timer));
return true;
}
TimerId TimerQueue::add_timer(NonnullRefPtr<Timer>&& timer)
{
ScopedSpinLock lock(g_timerqueue_lock);
timer->m_id = ++m_timer_id_count;
VERIFY(timer->m_id != 0); // wrapped
auto id = timer->m_id;
add_timer_locked(move(timer));
return id;
}
void TimerQueue::add_timer_locked(NonnullRefPtr<Timer> timer)
{
Time timer_expiration = timer->m_expires;
timer->clear_cancelled();
timer->clear_callback_finished();
timer->set_in_use();
auto& queue = queue_for_timer(*timer);
if (queue.list.is_empty()) {
queue.list.append(timer.leak_ref());
queue.next_timer_due = timer_expiration;
} else {
Timer* following_timer = nullptr;
for (auto& t : queue.list) {
if (t.m_expires > timer_expiration) {
following_timer = &t;
break;
}
}
if (following_timer) {
bool next_timer_needs_update = queue.list.first() == following_timer;
queue.list.insert_before(*following_timer, timer.leak_ref());
if (next_timer_needs_update)
queue.next_timer_due = timer_expiration;
} else {
queue.list.append(timer.leak_ref());
}
}
}
TimerId TimerQueue::add_timer(clockid_t clock_id, const Time& deadline, Function<void()>&& callback)
{
auto expires = TimeManagement::the().current_time(clock_id);
expires = expires + deadline;
auto timer = new Timer();
VERIFY(timer);
timer->setup(clock_id, expires, move(callback));
return add_timer(adopt_ref(*timer));
}
bool TimerQueue::cancel_timer(TimerId id)
{
Timer* found_timer = nullptr;
Queue* timer_queue = nullptr;
ScopedSpinLock lock(g_timerqueue_lock);
for (auto& timer : m_timer_queue_monotonic.list) {
if (timer.m_id == id) {
found_timer = &timer;
timer_queue = &m_timer_queue_monotonic;
break;
}
}
if (found_timer == nullptr) {
for (auto& timer : m_timer_queue_realtime.list) {
if (timer.m_id == id) {
found_timer = &timer;
timer_queue = &m_timer_queue_realtime;
break;
}
};
}
if (found_timer) {
VERIFY(timer_queue);
remove_timer_locked(*timer_queue, *found_timer);
return true;
}
// The timer may be executing right now, if it is then it should
// be in m_timers_executing. This is the case when the deferred
// call has been queued but not yet executed.
for (auto& timer : m_timers_executing) {
if (timer.m_id == id) {
found_timer = &timer;
break;
}
}
if (!found_timer)
return false;
// Keep a reference while we unlock
NonnullRefPtr<Timer> executing_timer(*found_timer);
lock.unlock();
if (!found_timer->set_cancelled()) {
// We cancelled it even though the deferred call has been queued already.
// We do not unref the timer here because the deferred call is still going
// too need it!
lock.lock();
VERIFY(m_timers_executing.contains(*found_timer));
m_timers_executing.remove(*found_timer);
return true;
}
// At this point the deferred call is queued and is being executed
// on another processor. We need to wait until it's complete!
while (!found_timer->is_callback_finished())
Processor::wait_check();
return true;
}
bool TimerQueue::cancel_timer(Timer& timer, bool* was_in_use)
{
bool in_use = timer.is_in_use();
if (was_in_use)
*was_in_use = in_use;
// If the timer isn't in use, the cancellation is a no-op.
if (!in_use) {
VERIFY(!timer.m_list_node.is_in_list());
return false;
}
bool did_already_run = timer.set_cancelled();
auto& timer_queue = queue_for_timer(timer);
if (!did_already_run) {
timer.clear_in_use();
ScopedSpinLock lock(g_timerqueue_lock);
if (timer_queue.list.contains(timer)) {
// The timer has not fired, remove it
VERIFY(timer.ref_count() > 1);
remove_timer_locked(timer_queue, timer);
return true;
}
// The timer was queued to execute but hasn't had a chance
// to run. In this case, it should still be in m_timers_executing
// and we don't need to spin. It still holds a reference
// that will be dropped when it does get a chance to run,
// but since we called set_cancelled it will only drop its reference
VERIFY(m_timers_executing.contains(timer));
m_timers_executing.remove(timer);
return true;
}
// At this point the deferred call is queued and is being executed
// on another processor. We need to wait until it's complete!
while (!timer.is_callback_finished())
Processor::wait_check();
return false;
}
void TimerQueue::remove_timer_locked(Queue& queue, Timer& timer)
{
bool was_next_timer = (queue.list.first() == &timer);
queue.list.remove(timer);
auto now = timer.now(false);
if (timer.m_expires > now)
timer.m_remaining = timer.m_expires - now;
if (was_next_timer)
update_next_timer_due(queue);
// Whenever we remove a timer that was still queued (but hasn't been
// fired) we added a reference to it. So, when removing it from the
// queue we need to drop that reference.
timer.unref();
}
void TimerQueue::fire()
{
ScopedSpinLock lock(g_timerqueue_lock);
auto fire_timers = [&](Queue& queue) {
auto* timer = queue.list.first();
VERIFY(timer);
VERIFY(queue.next_timer_due == timer->m_expires);
while (timer && timer->now(true) > timer->m_expires) {
queue.list.remove(*timer);
m_timers_executing.append(*timer);
update_next_timer_due(queue);
lock.unlock();
// Defer executing the timer outside of the irq handler
Processor::deferred_call_queue([this, timer]() {
// Check if we were cancelled in between being triggered
// by the timer irq handler and now. If so, just drop
// our reference and don't execute the callback.
if (!timer->set_cancelled()) {
timer->m_callback();
ScopedSpinLock lock(g_timerqueue_lock);
m_timers_executing.remove(*timer);
}
timer->clear_in_use();
timer->set_callback_finished();
// Drop the reference we added when queueing the timer
timer->unref();
});
lock.lock();
timer = queue.list.first();
}
};
if (!m_timer_queue_monotonic.list.is_empty())
fire_timers(m_timer_queue_monotonic);
if (!m_timer_queue_realtime.list.is_empty())
fire_timers(m_timer_queue_realtime);
}
void TimerQueue::update_next_timer_due(Queue& queue)
{
VERIFY(g_timerqueue_lock.is_locked());
if (auto* next_timer = queue.list.first())
queue.next_timer_due = next_timer->m_expires;
else
queue.next_timer_due = {};
}
}