ladybird/Kernel/Bus/PCI/Access.cpp
Gunnar Beutner 36e36507d5 Everywhere: Prefer using {:#x} over 0x{:x}
We have a dedicated format specifier which adds the "0x" prefix, so
let's use that instead of adding it manually.
2021-07-22 08:57:01 +02:00

461 lines
14 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Bus/PCI/Access.h>
#include <Kernel/Bus/PCI/IOAccess.h>
#include <Kernel/Debug.h>
#include <Kernel/IO.h>
#include <Kernel/Sections.h>
namespace Kernel {
namespace PCI {
static Access* s_access;
inline void write8(Address address, u32 field, u8 value) { Access::the().write8_field(address, field, value); }
inline void write16(Address address, u32 field, u16 value) { Access::the().write16_field(address, field, value); }
inline void write32(Address address, u32 field, u32 value) { Access::the().write32_field(address, field, value); }
inline u8 read8(Address address, u32 field) { return Access::the().read8_field(address, field); }
inline u16 read16(Address address, u32 field) { return Access::the().read16_field(address, field); }
inline u32 read32(Address address, u32 field) { return Access::the().read32_field(address, field); }
Access& Access::the()
{
if (s_access == nullptr) {
VERIFY_NOT_REACHED(); // We failed to initialize the PCI subsystem, so stop here!
}
return *s_access;
}
bool Access::is_initialized()
{
return (s_access != nullptr);
}
UNMAP_AFTER_INIT Access::Access()
: m_enumerated_buses(256, false)
{
s_access = this;
}
PhysicalID Access::get_physical_id(Address address) const
{
for (auto physical_id : m_physical_ids) {
if (physical_id.address().seg() == address.seg()
&& physical_id.address().bus() == address.bus()
&& physical_id.address().device() == address.device()
&& physical_id.address().function() == address.function()) {
return physical_id;
}
}
VERIFY_NOT_REACHED();
}
u8 Access::early_read8_field(Address address, u32 field)
{
dbgln_if(PCI_DEBUG, "PCI: Early reading 8-bit field {:#08x} for {}", field, address);
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
return IO::in8(PCI_VALUE_PORT + (field & 3));
}
u16 Access::early_read16_field(Address address, u32 field)
{
dbgln_if(PCI_DEBUG, "PCI: Early reading 16-bit field {:#08x} for {}", field, address);
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
return IO::in16(PCI_VALUE_PORT + (field & 2));
}
u32 Access::early_read32_field(Address address, u32 field)
{
dbgln_if(PCI_DEBUG, "PCI: Early reading 32-bit field {:#08x} for {}", field, address);
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
return IO::in32(PCI_VALUE_PORT);
}
u16 Access::early_read_type(Address address)
{
dbgln_if(PCI_DEBUG, "PCI: Early reading type for {}", address);
return (early_read8_field(address, PCI_CLASS) << 8u) | early_read8_field(address, PCI_SUBCLASS);
}
UNMAP_AFTER_INIT void Access::enumerate_functions(int type, u8 bus, u8 device, u8 function, Function<void(Address, ID)>& callback, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating function type={}, bus={}, device={}, function={}", type, bus, device, function);
Address address(0, bus, device, function);
if (type == -1 || type == early_read_type(address))
callback(address, { early_read16_field(address, PCI_VENDOR_ID), early_read16_field(address, PCI_DEVICE_ID) });
if (early_read_type(address) == PCI_TYPE_BRIDGE && recursive && (!m_enumerated_buses.get(early_read8_field(address, PCI_SECONDARY_BUS)))) {
u8 secondary_bus = early_read8_field(address, PCI_SECONDARY_BUS);
dbgln_if(PCI_DEBUG, "PCI: Found secondary bus: {}", secondary_bus);
VERIFY(secondary_bus != bus);
m_enumerated_buses.set(secondary_bus, true);
enumerate_bus(type, secondary_bus, callback, recursive);
}
}
UNMAP_AFTER_INIT void Access::enumerate_device(int type, u8 bus, u8 device, Function<void(Address, ID)>& callback, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating device type={}, bus={}, device={}", type, bus, device);
Address address(0, bus, device, 0);
if (early_read16_field(address, PCI_VENDOR_ID) == PCI_NONE)
return;
enumerate_functions(type, bus, device, 0, callback, recursive);
if (!(early_read8_field(address, PCI_HEADER_TYPE) & 0x80))
return;
for (u8 function = 1; function < 8; ++function) {
Address address(0, bus, device, function);
if (early_read16_field(address, PCI_VENDOR_ID) != PCI_NONE)
enumerate_functions(type, bus, device, function, callback, recursive);
}
}
UNMAP_AFTER_INIT void Access::enumerate_bus(int type, u8 bus, Function<void(Address, ID)>& callback, bool recursive)
{
dbgln_if(PCI_DEBUG, "PCI: Enumerating bus type={}, bus={}", type, bus);
for (u8 device = 0; device < 32; ++device)
enumerate_device(type, bus, device, callback, recursive);
}
void Access::enumerate(Function<void(Address, ID)>& callback) const
{
for (auto& physical_id : m_physical_ids) {
callback(physical_id.address(), physical_id.id());
}
}
void enumerate(Function<void(Address, ID)> callback)
{
Access::the().enumerate(callback);
}
UNMAP_AFTER_INIT Optional<u8> get_capabilities_pointer(Address address)
{
dbgln_if(PCI_DEBUG, "PCI: Getting capabilities pointer for {}", address);
if (PCI::read16(address, PCI_STATUS) & (1 << 4)) {
dbgln_if(PCI_DEBUG, "PCI: Found capabilities pointer for {}", address);
return PCI::read8(address, PCI_CAPABILITIES_POINTER);
}
dbgln_if(PCI_DEBUG, "PCI: No capabilities pointer for {}", address);
return {};
}
PhysicalID get_physical_id(Address address)
{
return Access::the().get_physical_id(address);
}
UNMAP_AFTER_INIT Vector<Capability> get_capabilities(Address address)
{
dbgln_if(PCI_DEBUG, "PCI: Getting capabilities for {}", address);
auto capabilities_pointer = PCI::get_capabilities_pointer(address);
if (!capabilities_pointer.has_value()) {
dbgln_if(PCI_DEBUG, "PCI: No capabilities for {}", address);
return {};
}
Vector<Capability> capabilities;
auto capability_pointer = capabilities_pointer.value();
while (capability_pointer != 0) {
dbgln_if(PCI_DEBUG, "PCI: Reading in capability at {:#02x} for {}", capability_pointer, address);
u16 capability_header = PCI::read16(address, capability_pointer);
u8 capability_id = capability_header & 0xff;
capabilities.append({ address, capability_id, capability_pointer });
capability_pointer = capability_header >> 8;
}
return capabilities;
}
void raw_access(Address address, u32 field, size_t access_size, u32 value)
{
VERIFY(access_size != 0);
if (access_size == 1) {
write8(address, field, value);
return;
}
if (access_size == 2) {
write16(address, field, value);
return;
}
if (access_size == 4) {
write32(address, field, value);
return;
}
VERIFY_NOT_REACHED();
}
ID get_id(Address address)
{
return { read16(address, PCI_VENDOR_ID), read16(address, PCI_DEVICE_ID) };
}
void enable_io_space(Address address)
{
write16(address, PCI_COMMAND, read16(address, PCI_COMMAND) | (1 << 0));
}
void disable_io_space(Address address)
{
write16(address, PCI_COMMAND, read16(address, PCI_COMMAND) & ~(1 << 0));
}
void enable_memory_space(Address address)
{
write16(address, PCI_COMMAND, read16(address, PCI_COMMAND) | (1 << 1));
}
void disable_memory_space(Address address)
{
write16(address, PCI_COMMAND, read16(address, PCI_COMMAND) & ~(1 << 1));
}
bool is_io_space_enabled(Address address)
{
return (read16(address, PCI_COMMAND) & 1) != 0;
}
void enable_interrupt_line(Address address)
{
write16(address, PCI_COMMAND, read16(address, PCI_COMMAND) & ~(1 << 10));
}
void disable_interrupt_line(Address address)
{
write16(address, PCI_COMMAND, read16(address, PCI_COMMAND) | 1 << 10);
}
u8 get_interrupt_line(Address address)
{
return read8(address, PCI_INTERRUPT_LINE);
}
u32 get_BAR0(Address address)
{
return read32(address, PCI_BAR0);
}
u32 get_BAR1(Address address)
{
return read32(address, PCI_BAR1);
}
u32 get_BAR2(Address address)
{
return read32(address, PCI_BAR2);
}
u32 get_BAR3(Address address)
{
return read16(address, PCI_BAR3);
}
u32 get_BAR4(Address address)
{
return read32(address, PCI_BAR4);
}
u32 get_BAR5(Address address)
{
return read32(address, PCI_BAR5);
}
u32 get_BAR(Address address, u8 bar)
{
VERIFY(bar <= 5);
switch (bar) {
case 0:
return get_BAR0(address);
case 1:
return get_BAR1(address);
case 2:
return get_BAR2(address);
case 3:
return get_BAR3(address);
case 4:
return get_BAR4(address);
case 5:
return get_BAR5(address);
default:
VERIFY_NOT_REACHED();
}
}
u8 get_revision_id(Address address)
{
return read8(address, PCI_REVISION_ID);
}
u8 get_subclass(Address address)
{
return read8(address, PCI_SUBCLASS);
}
u8 get_class(Address address)
{
return read8(address, PCI_CLASS);
}
u8 get_programming_interface(Address address)
{
return read8(address, PCI_PROG_IF);
}
u16 get_subsystem_id(Address address)
{
return read16(address, PCI_SUBSYSTEM_ID);
}
u16 get_subsystem_vendor_id(Address address)
{
return read16(address, PCI_SUBSYSTEM_VENDOR_ID);
}
void enable_bus_mastering(Address address)
{
auto value = read16(address, PCI_COMMAND);
value |= (1 << 2);
value |= (1 << 0);
write16(address, PCI_COMMAND, value);
}
void disable_bus_mastering(Address address)
{
auto value = read16(address, PCI_COMMAND);
value &= ~(1 << 2);
value |= (1 << 0);
write16(address, PCI_COMMAND, value);
}
size_t get_BAR_space_size(Address address, u8 bar_number)
{
// See PCI Spec 2.3, Page 222
VERIFY(bar_number < 6);
u8 field = (PCI_BAR0 + (bar_number << 2));
u32 bar_reserved = read32(address, field);
write32(address, field, 0xFFFFFFFF);
u32 space_size = read32(address, field);
write32(address, field, bar_reserved);
space_size &= 0xfffffff0;
space_size = (~space_size) + 1;
return space_size;
}
u8 Capability::read8(u32 field) const
{
return PCI::read8(m_address, m_ptr + field);
}
u16 Capability::read16(u32 field) const
{
return PCI::read16(m_address, m_ptr + field);
}
u32 Capability::read32(u32 field) const
{
return PCI::read32(m_address, m_ptr + field);
}
void Capability::write8(u32 field, u8 value)
{
PCI::write8(m_address, m_ptr + field, value);
}
void Capability::write16(u32 field, u16 value)
{
PCI::write16(m_address, m_ptr + field, value);
}
void Capability::write32(u32 field, u32 value)
{
PCI::write32(m_address, m_ptr + field, value);
}
UNMAP_AFTER_INIT NonnullRefPtr<PCIDeviceSysFSDirectory> PCIDeviceSysFSDirectory::create(const SysFSDirectory& parent_directory, Address address)
{
return adopt_ref(*new (nothrow) PCIDeviceSysFSDirectory(parent_directory, address));
}
UNMAP_AFTER_INIT PCIDeviceSysFSDirectory::PCIDeviceSysFSDirectory(const SysFSDirectory& parent_directory, Address address)
: SysFSDirectory(String::formatted("{:04x}:{:04x}:{:02x}.{}", address.seg(), address.bus(), address.device(), address.function()), parent_directory)
{
m_components.append(PCIDeviceAttributeSysFSComponent::create("vendor", *this, PCI_VENDOR_ID, 2));
m_components.append(PCIDeviceAttributeSysFSComponent::create("device_id", *this, PCI_DEVICE_ID, 2));
m_components.append(PCIDeviceAttributeSysFSComponent::create("class", *this, PCI_CLASS, 1));
m_components.append(PCIDeviceAttributeSysFSComponent::create("subclass", *this, PCI_SUBCLASS, 1));
m_components.append(PCIDeviceAttributeSysFSComponent::create("revision", *this, PCI_REVISION_ID, 1));
m_components.append(PCIDeviceAttributeSysFSComponent::create("progif", *this, PCI_PROG_IF, 1));
m_components.append(PCIDeviceAttributeSysFSComponent::create("subsystem_vendor", *this, PCI_SUBSYSTEM_VENDOR_ID, 2));
m_components.append(PCIDeviceAttributeSysFSComponent::create("subsystem_id", *this, PCI_SUBSYSTEM_ID, 2));
}
UNMAP_AFTER_INIT void PCIBusSysFSDirectory::initialize()
{
auto pci_directory = adopt_ref(*new (nothrow) PCIBusSysFSDirectory());
SysFSComponentRegistry::the().register_new_component(pci_directory);
}
UNMAP_AFTER_INIT PCIBusSysFSDirectory::PCIBusSysFSDirectory()
: SysFSDirectory("pci", SysFSComponentRegistry::the().root_directory())
{
PCI::enumerate([&](const Address& address, ID) {
auto pci_device = PCI::PCIDeviceSysFSDirectory::create(*this, address);
m_components.append(pci_device);
});
}
NonnullRefPtr<PCIDeviceAttributeSysFSComponent> PCIDeviceAttributeSysFSComponent::create(String name, const PCIDeviceSysFSDirectory& device, size_t offset, size_t field_bytes_width)
{
return adopt_ref(*new (nothrow) PCIDeviceAttributeSysFSComponent(name, device, offset, field_bytes_width));
}
PCIDeviceAttributeSysFSComponent::PCIDeviceAttributeSysFSComponent(String name, const PCIDeviceSysFSDirectory& device, size_t offset, size_t field_bytes_width)
: SysFSComponent(name)
, m_device(device)
, m_offset(offset)
, m_field_bytes_width(field_bytes_width)
{
}
KResultOr<size_t> PCIDeviceAttributeSysFSComponent::read_bytes(off_t offset, size_t count, UserOrKernelBuffer& buffer, FileDescription*) const
{
auto blob = try_to_generate_buffer();
if (!blob)
return KResult(EFAULT);
if ((size_t)offset >= blob->size())
return KSuccess;
ssize_t nread = min(static_cast<off_t>(blob->size() - offset), static_cast<off_t>(count));
if (!buffer.write(blob->data() + offset, nread))
return KResult(EFAULT);
return nread;
}
size_t PCIDeviceAttributeSysFSComponent::size() const
{
auto buffer = try_to_generate_buffer();
if (!buffer)
return 0;
return buffer->size();
}
OwnPtr<KBuffer> PCIDeviceAttributeSysFSComponent::try_to_generate_buffer() const
{
String value;
switch (m_field_bytes_width) {
case 1:
value = String::formatted("{:#x}", PCI::read8(m_device->address(), m_offset));
break;
case 2:
value = String::formatted("{:#x}", PCI::read16(m_device->address(), m_offset));
break;
case 4:
value = String::formatted("{:#x}", PCI::read32(m_device->address(), m_offset));
break;
default:
VERIFY_NOT_REACHED();
}
return KBuffer::try_create_with_bytes(value.substring_view(0).bytes());
}
}
}