/* * Copyright (c) 2020, the SerenityOS developers. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include #include #include #include #include #include #include #include namespace AK::Detail { class Stream { public: virtual ~Stream() { ASSERT(!has_any_error()); } bool has_recoverable_error() const { return m_recoverable_error; } bool has_fatal_error() const { return m_fatal_error; } bool has_any_error() const { return has_recoverable_error() || has_fatal_error(); } bool handle_recoverable_error() { ASSERT(!has_fatal_error()); return exchange(m_recoverable_error, false); } bool handle_fatal_error() { return exchange(m_fatal_error, false); } bool handle_any_error() { if (has_any_error()) { m_recoverable_error = false; m_fatal_error = false; return true; } return false; } void set_recoverable_error() const { m_recoverable_error = true; } void set_fatal_error() const { m_fatal_error = true; } private: mutable bool m_recoverable_error { false }; mutable bool m_fatal_error { false }; }; } namespace AK { class InputStream : public virtual AK::Detail::Stream { public: virtual size_t read(Bytes) = 0; virtual bool read_or_error(Bytes) = 0; virtual bool eof() const = 0; virtual bool discard_or_error(size_t count) = 0; }; class OutputStream : public virtual AK::Detail::Stream { public: virtual size_t write(ReadonlyBytes) = 0; virtual bool write_or_error(ReadonlyBytes) = 0; }; class DuplexStream : public InputStream , public OutputStream { }; inline InputStream& operator>>(InputStream& stream, Bytes bytes) { stream.read_or_error(bytes); return stream; } inline OutputStream& operator<<(OutputStream& stream, ReadonlyBytes bytes) { stream.write_or_error(bytes); return stream; } template InputStream& operator>>(InputStream& stream, LittleEndian& value) { return stream >> Bytes { &value.m_value, sizeof(value.m_value) }; } template OutputStream& operator<<(OutputStream& stream, LittleEndian value) { return stream << ReadonlyBytes { &value.m_value, sizeof(value.m_value) }; } template InputStream& operator>>(InputStream& stream, BigEndian& value) { return stream >> Bytes { &value.m_value, sizeof(value.m_value) }; } template OutputStream& operator<<(OutputStream& stream, BigEndian value) { return stream << ReadonlyBytes { &value.m_value, sizeof(value.m_value) }; } template InputStream& operator>>(InputStream& stream, Optional& value) { T temporary; stream >> temporary; value = temporary; return stream; } #if defined(__cpp_concepts) && !defined(__COVERITY__) template #else template::value, int>::Type = 0> #endif InputStream& operator>>(InputStream& stream, Integral& value) { stream.read_or_error({ &value, sizeof(value) }); return stream; } #if defined(__cpp_concepts) && !defined(__COVERITY__) template #else template::value, int>::Type = 0> #endif OutputStream& operator<<(OutputStream& stream, Integral value) { stream.write_or_error({ &value, sizeof(value) }); return stream; } #ifndef KERNEL // FIXME: clang-format adds spaces before the #if for some reason. // clang-format off #if defined(__cpp_concepts) && !defined(__COVERITY__) template #else template::value, int>::Type = 0> #endif InputStream& operator>>(InputStream& stream, FloatingPoint& value) { stream.read_or_error({ &value, sizeof(value) }); return stream; } #if defined(__cpp_concepts) && !defined(__COVERITY__) template #else template::value, int>::Type = 0> #endif OutputStream& operator<<(OutputStream& stream, FloatingPoint value) { stream.write_or_error({ &value, sizeof(value) }); return stream; } #endif // clang-format on inline InputStream& operator>>(InputStream& stream, bool& value) { stream.read_or_error({ &value, sizeof(value) }); return stream; } inline OutputStream& operator<<(OutputStream& stream, bool value) { stream.write_or_error({ &value, sizeof(value) }); return stream; } class InputMemoryStream final : public InputStream { public: InputMemoryStream(ReadonlyBytes bytes) : m_bytes(bytes) { } bool eof() const override { return m_offset >= m_bytes.size(); } size_t read(Bytes bytes) override { const auto count = min(bytes.size(), remaining()); __builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, count); m_offset += count; return count; } bool read_or_error(Bytes bytes) override { if (remaining() < bytes.size()) { set_recoverable_error(); return false; } __builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, bytes.size()); m_offset += bytes.size(); return true; } bool discard_or_error(size_t count) override { if (remaining() < count) { set_recoverable_error(); return false; } m_offset += count; return true; } void seek(size_t offset) { ASSERT(offset < m_bytes.size()); m_offset = offset; } u8 peek_or_error() const { if (remaining() == 0) { set_recoverable_error(); return 0; } return m_bytes[m_offset]; } // LEB128 is a variable-length encoding for integers bool read_LEB128_unsigned(size_t& result) { const auto backup = m_offset; result = 0; size_t num_bytes = 0; while (true) { // Note. The implementation in AK::BufferStream::read_LEB128_unsigned read one // past the end, this is fixed here. if (eof()) { m_offset = backup; set_recoverable_error(); return false; } const u8 byte = m_bytes[m_offset]; result = (result) | (static_cast(byte & ~(1 << 7)) << (num_bytes * 7)); ++m_offset; if (!(byte & (1 << 7))) break; ++num_bytes; } return true; } // LEB128 is a variable-length encoding for integers bool read_LEB128_signed(ssize_t& result) { const auto backup = m_offset; result = 0; size_t num_bytes = 0; u8 byte = 0; do { // Note. The implementation in AK::BufferStream::read_LEB128_unsigned read one // past the end, this is fixed here. if (eof()) { m_offset = backup; set_recoverable_error(); return false; } byte = m_bytes[m_offset]; result = (result) | (static_cast(byte & ~(1 << 7)) << (num_bytes * 7)); ++m_offset; ++num_bytes; } while (byte & (1 << 7)); if (num_bytes * 7 < sizeof(size_t) * 4 && (byte & 0x40)) { // sign extend result |= ((size_t)(-1) << (num_bytes * 7)); } return true; } ReadonlyBytes bytes() const { return m_bytes; } size_t offset() const { return m_offset; } size_t remaining() const { return m_bytes.size() - m_offset; } private: ReadonlyBytes m_bytes; size_t m_offset { 0 }; }; // All data written to this stream can be read from it. Reading and writing is done // using different offsets, meaning that it is not necessary to seek to the start // before reading; this behaviour differs from BufferStream. // // The stream keeps a history of 64KiB which means that seeking backwards is well // defined. Data past that point will be discarded. class DuplexMemoryStream final : public DuplexStream { public: static constexpr size_t chunk_size = 4 * 1024; static constexpr size_t history_size = 64 * 1024; bool eof() const override { return m_write_offset == m_read_offset; } bool discard_or_error(size_t count) override { if (m_write_offset - m_read_offset < count) { set_recoverable_error(); return false; } m_read_offset += count; try_discard_chunks(); return true; } Optional offset_of(ReadonlyBytes value) const { if (value.size() > remaining()) return {}; // First, find which chunk we're in. auto chunk_index = (m_read_offset - m_base_offset) / chunk_size; auto last_written_chunk_index = (m_write_offset - m_base_offset) / chunk_size; auto first_chunk_index = chunk_index; auto last_written_chunk_offset = m_write_offset % chunk_size; auto first_chunk_offset = m_read_offset % chunk_size; size_t last_chunk_offset = 0; auto found_value = false; for (; chunk_index <= last_written_chunk_index; ++chunk_index) { auto chunk_bytes = m_chunks[chunk_index].bytes(); size_t chunk_offset = 0; if (chunk_index == last_written_chunk_index) { chunk_bytes = chunk_bytes.slice(0, last_written_chunk_offset); } if (chunk_index == first_chunk_index) { chunk_bytes = chunk_bytes.slice(first_chunk_offset); chunk_offset = first_chunk_offset; } // See if 'value' is in this chunk, auto position = AK::memmem(chunk_bytes.data(), chunk_bytes.size(), value.data(), value.size()); if (!position) continue; // Not in this chunk either :( // We found it! found_value = true; last_chunk_offset = (const u8*)position - chunk_bytes.data() + chunk_offset; break; } if (found_value) { if (first_chunk_index == chunk_index) return last_chunk_offset - first_chunk_offset; return (chunk_index - first_chunk_index) * chunk_size + last_chunk_offset - first_chunk_offset; } // No dice. return {}; } size_t read(Bytes bytes) override { size_t nread = 0; while (bytes.size() - nread > 0 && m_write_offset - m_read_offset - nread > 0) { const auto chunk_index = (m_read_offset - m_base_offset) / chunk_size; const auto chunk_bytes = m_chunks[chunk_index].bytes().slice(m_read_offset % chunk_size).trim(m_write_offset - m_read_offset - nread); nread += chunk_bytes.copy_trimmed_to(bytes.slice(nread)); } m_read_offset += nread; try_discard_chunks(); return nread; } size_t read(Bytes bytes, size_t offset) { const auto backup = this->roffset(); bool do_discard_chunks = false; exchange(m_do_discard_chunks, do_discard_chunks); rseek(offset); const auto count = read(bytes); rseek(backup); exchange(m_do_discard_chunks, do_discard_chunks); return count; } bool read_or_error(Bytes bytes) override { if (m_write_offset - m_read_offset < bytes.size()) { set_recoverable_error(); return false; } read(bytes); return true; } size_t write(ReadonlyBytes bytes) override { size_t nwritten = 0; while (bytes.size() - nwritten > 0) { if ((m_write_offset + nwritten) % chunk_size == 0) m_chunks.append(ByteBuffer::create_uninitialized(chunk_size)); nwritten += bytes.copy_trimmed_to(m_chunks.last().bytes().slice(m_write_offset % chunk_size)); } m_write_offset += nwritten; return nwritten; } bool write_or_error(ReadonlyBytes bytes) override { write(bytes); return true; } size_t roffset() const { return m_read_offset; } size_t woffset() const { return m_write_offset; } void rseek(size_t offset) { ASSERT(offset >= m_base_offset); ASSERT(offset <= m_write_offset); m_read_offset = offset; } size_t remaining() const { return m_write_offset - m_read_offset; } private: void try_discard_chunks() { if (!m_do_discard_chunks) return; while (m_read_offset - m_base_offset >= history_size + chunk_size) { m_chunks.take_first(); m_base_offset += chunk_size; } } Vector m_chunks; size_t m_write_offset { 0 }; size_t m_read_offset { 0 }; size_t m_base_offset { 0 }; bool m_do_discard_chunks { false }; }; } using AK::DuplexMemoryStream; using AK::InputMemoryStream; using AK::InputStream;