/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include namespace Kernel { #define PATA_PRIMARY_IRQ 14 #define PATA_SECONDARY_IRQ 15 #define ATA_SR_BSY 0x80 #define ATA_SR_DRDY 0x40 #define ATA_SR_DF 0x20 #define ATA_SR_DSC 0x10 #define ATA_SR_DRQ 0x08 #define ATA_SR_CORR 0x04 #define ATA_SR_IDX 0x02 #define ATA_SR_ERR 0x01 #define ATA_ER_BBK 0x80 #define ATA_ER_UNC 0x40 #define ATA_ER_MC 0x20 #define ATA_ER_IDNF 0x10 #define ATA_ER_MCR 0x08 #define ATA_ER_ABRT 0x04 #define ATA_ER_TK0NF 0x02 #define ATA_ER_AMNF 0x01 #define ATA_CMD_READ_PIO 0x20 #define ATA_CMD_READ_PIO_EXT 0x24 #define ATA_CMD_READ_DMA 0xC8 #define ATA_CMD_READ_DMA_EXT 0x25 #define ATA_CMD_WRITE_PIO 0x30 #define ATA_CMD_WRITE_PIO_EXT 0x34 #define ATA_CMD_WRITE_DMA 0xCA #define ATA_CMD_WRITE_DMA_EXT 0x35 #define ATA_CMD_CACHE_FLUSH 0xE7 #define ATA_CMD_CACHE_FLUSH_EXT 0xEA #define ATA_CMD_PACKET 0xA0 #define ATA_CMD_IDENTIFY_PACKET 0xA1 #define ATA_CMD_IDENTIFY 0xEC #define ATAPI_CMD_READ 0xA8 #define ATAPI_CMD_EJECT 0x1B #define ATA_IDENT_DEVICETYPE 0 #define ATA_IDENT_CYLINDERS 2 #define ATA_IDENT_HEADS 6 #define ATA_IDENT_SECTORS 12 #define ATA_IDENT_SERIAL 20 #define ATA_IDENT_MODEL 54 #define ATA_IDENT_CAPABILITIES 98 #define ATA_IDENT_FIELDVALID 106 #define ATA_IDENT_MAX_LBA 120 #define ATA_IDENT_COMMANDSETS 164 #define ATA_IDENT_MAX_LBA_EXT 200 #define IDE_ATA 0x00 #define IDE_ATAPI 0x01 #define ATA_REG_DATA 0x00 #define ATA_REG_ERROR 0x01 #define ATA_REG_FEATURES 0x01 #define ATA_REG_SECCOUNT0 0x02 #define ATA_REG_LBA0 0x03 #define ATA_REG_LBA1 0x04 #define ATA_REG_LBA2 0x05 #define ATA_REG_HDDEVSEL 0x06 #define ATA_REG_COMMAND 0x07 #define ATA_REG_STATUS 0x07 #define ATA_REG_SECCOUNT1 0x08 #define ATA_REG_LBA3 0x09 #define ATA_REG_LBA4 0x0A #define ATA_REG_LBA5 0x0B #define ATA_CTL_CONTROL 0x00 #define ATA_CTL_ALTSTATUS 0x00 #define ATA_CTL_DEVADDRESS 0x01 #define ATA_CAP_LBA 0x200 #define PCI_Mass_Storage_Class 0x1 #define PCI_IDE_Controller_Subclass 0x1 NonnullOwnPtr IDEChannel::create(const IDEController& controller, IOAddressGroup io_group, ChannelType type, bool force_pio) { return make(controller, io_group, type, force_pio); } RefPtr IDEChannel::master_device() const { return m_master; } RefPtr IDEChannel::slave_device() const { return m_slave; } IDEChannel::IDEChannel(const IDEController& controller, IOAddressGroup io_group, ChannelType type, bool force_pio) : IRQHandler(type == ChannelType::Primary ? PATA_PRIMARY_IRQ : PATA_SECONDARY_IRQ) , m_channel_type(type) , m_io_group(io_group) , m_parent_controller(controller) { disable_irq(); // FIXME: The device may not be capable of DMA. m_dma_enabled.resource() = !force_pio; ProcFS::add_sys_bool("ide_dma", m_dma_enabled); initialize(force_pio); detect_disks(); // Note: calling to detect_disks could generate an interrupt, clear it if that's the case clear_pending_interrupts(); enable_irq(); } void IDEChannel::clear_pending_interrupts() const { m_io_group.io_base().offset(ATA_REG_STATUS).in(); } IDEChannel::~IDEChannel() { } void IDEChannel::start_request(AsyncBlockDeviceRequest& request, bool use_dma, bool is_slave, u16 capabilities) { ScopedSpinLock lock(m_request_lock); dbgln("IDEChannel::start_request"); m_current_request = &request; m_current_request_block_index = 0; m_current_request_uses_dma = use_dma; m_current_request_flushing_cache = false; if (request.request_type() == AsyncBlockDeviceRequest::Read) { if (use_dma) ata_read_sectors_with_dma(is_slave, capabilities); else ata_read_sectors(is_slave, capabilities); } else { if (use_dma) ata_write_sectors_with_dma(is_slave, capabilities); else ata_write_sectors(is_slave, capabilities); } } void IDEChannel::complete_current_request(AsyncDeviceRequest::RequestResult result) { // NOTE: this may be called from the interrupt handler! ASSERT(m_current_request); ASSERT(m_request_lock.is_locked()); // Now schedule reading back the buffer as soon as we leave the irq handler. // This is important so that we can safely write the buffer back, // which could cause page faults. Note that this may be called immediately // before Processor::deferred_call_queue returns! Processor::deferred_call_queue([this, result]() { dbgln("IDEChannel::complete_current_request result: {}", (int)result); ASSERT(m_current_request); auto& request = *m_current_request; m_current_request = nullptr; if (m_current_request_uses_dma) { if (result == AsyncDeviceRequest::Success) { if (request.request_type() == AsyncBlockDeviceRequest::Read) { if (!request.write_to_buffer(request.buffer(), m_dma_buffer_page->paddr().offset(0xc0000000).as_ptr(), 512 * request.block_count())) { request.complete(AsyncDeviceRequest::MemoryFault); return; } } // I read somewhere that this may trigger a cache flush so let's do it. m_io_group.bus_master_base().offset(2).out(m_io_group.bus_master_base().offset(2).in() | 0x6); } } request.complete(result); }); } void IDEChannel::initialize(bool force_pio) { m_parent_controller->enable_pin_based_interrupts(); dbgln("IDEChannel: {} IO base: {}", channel_type_string(), m_io_group.io_base()); dbgln("IDEChannel: {} control base: {}", channel_type_string(), m_io_group.control_base()); dbgln("IDEChannel: {} bus master base: {}", channel_type_string(), m_io_group.bus_master_base()); if (force_pio) { dbgln("IDEChannel: Requested to force PIO mode; not setting up DMA"); return; } // Let's try to set up DMA transfers. PCI::enable_bus_mastering(m_parent_controller->pci_address()); m_prdt_page = MM.allocate_supervisor_physical_page(); prdt().end_of_table = 0x8000; m_dma_buffer_page = MM.allocate_supervisor_physical_page(); } static void print_ide_status(u8 status) { klog() << "IDEChannel: print_ide_status: DRQ=" << ((status & ATA_SR_DRQ) != 0) << " BSY=" << ((status & ATA_SR_BSY) != 0) << " DRDY=" << ((status & ATA_SR_DRDY) != 0) << " DSC=" << ((status & ATA_SR_DSC) != 0) << " DF=" << ((status & ATA_SR_DF) != 0) << " CORR=" << ((status & ATA_SR_CORR) != 0) << " IDX=" << ((status & ATA_SR_IDX) != 0) << " ERR=" << ((status & ATA_SR_ERR) != 0); } void IDEChannel::try_disambiguate_error() { dbgln("IDEChannel: Error cause:"); switch (m_device_error) { case ATA_ER_BBK: dbgln("IDEChannel: - Bad block"); break; case ATA_ER_UNC: dbgln("IDEChannel: - Uncorrectable data"); break; case ATA_ER_MC: dbgln("IDEChannel: - Media changed"); break; case ATA_ER_IDNF: dbgln("IDEChannel: - ID mark not found"); break; case ATA_ER_MCR: dbgln("IDEChannel: - Media change request"); break; case ATA_ER_ABRT: dbgln("IDEChannel: - Command aborted"); break; case ATA_ER_TK0NF: dbgln("IDEChannel: - Track 0 not found"); break; case ATA_ER_AMNF: dbgln("IDEChannel: - No address mark"); break; default: dbgln("IDEChannel: - No one knows"); break; } } void IDEChannel::handle_irq(const RegisterState&) { u8 status = m_io_group.io_base().offset(ATA_REG_STATUS).in(); m_entropy_source.add_random_event(status); u8 bstatus = m_io_group.bus_master_base().offset(2).in(); if (!(bstatus & 0x4)) { // interrupt not from this device, ignore dbgln("IDEChannel: ignore interrupt"); return; } ScopedSpinLock lock(m_request_lock); #if PATA_DEBUG klog() << "IDEChannel: interrupt: DRQ=" << ((status & ATA_SR_DRQ) != 0) << " BSY=" << ((status & ATA_SR_BSY) != 0) << " DRDY=" << ((status & ATA_SR_DRDY) != 0); #endif if (!m_current_request) { #if PATA_DEBUG dbgln("IDEChannel: IRQ but no pending request!"); #endif return; } if (status & ATA_SR_ERR) { print_ide_status(status); m_device_error = m_io_group.io_base().offset(ATA_REG_ERROR).in(); dbgln("IDEChannel: Error {:#02x}!", (u8)m_device_error); try_disambiguate_error(); complete_current_request(AsyncDeviceRequest::Failure); return; } m_device_error = 0; if (m_current_request_uses_dma) { complete_current_request(AsyncDeviceRequest::Success); return; } // Now schedule reading/writing the buffer as soon as we leave the irq handler. // This is important so that we can safely access the buffers, which could // trigger page faults Processor::deferred_call_queue([this]() { ScopedSpinLock lock(m_request_lock); if (m_current_request->request_type() == AsyncBlockDeviceRequest::Read) { dbgln("IDEChannel: Read block {}/{}", m_current_request_block_index, m_current_request->block_count()); if (ata_do_read_sector()) { if (++m_current_request_block_index >= m_current_request->block_count()) { complete_current_request(AsyncDeviceRequest::Success); return; } // Wait for the next block enable_irq(); } } else { if (!m_current_request_flushing_cache) { dbgln("IDEChannel: Wrote block {}/{}", m_current_request_block_index, m_current_request->block_count()); if (++m_current_request_block_index >= m_current_request->block_count()) { // We read the last block, flush cache ASSERT(!m_current_request_flushing_cache); m_current_request_flushing_cache = true; m_io_group.io_base().offset(ATA_REG_COMMAND).out(ATA_CMD_CACHE_FLUSH); } else { // Read next block ata_do_write_sector(); } } else { complete_current_request(AsyncDeviceRequest::Success); } } }); } static void io_delay() { for (int i = 0; i < 4; ++i) IO::in8(0x3f6); } void IDEChannel::wait_until_not_busy() { while (m_io_group.control_base().in() & ATA_SR_BSY) ; } String IDEChannel::channel_type_string() const { if (m_channel_type == ChannelType::Primary) return "Primary"; return "Secondary"; } void IDEChannel::detect_disks() { auto channel_string = [](u8 i) -> const char* { if (i == 0) return "master"; return "slave"; }; // There are only two possible disks connected to a channel for (auto i = 0; i < 2; i++) { m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out(0xA0 | (i << 4)); // First, we need to select the drive itself m_io_group.io_base().offset(ATA_REG_COMMAND).out(ATA_CMD_IDENTIFY); // Send the ATA_IDENTIFY command // Wait for the BSY flag to be reset while (m_io_group.control_base().in() & ATA_SR_BSY) ; if (m_io_group.control_base().in() == 0x00) { dbgln("IDEChannel: No {} {} disk detected!", channel_type_string().to_lowercase(), channel_string(i)); continue; } bool check_for_atapi = false; PATADiskDevice::InterfaceType interface_type = PATADiskDevice::InterfaceType::ATA; for (;;) { u8 status = m_io_group.control_base().in(); if (status & ATA_SR_ERR) { dbgln("IDEChannel: {} {} device is not ATA. Will check for ATAPI.", channel_type_string(), channel_string(i)); check_for_atapi = true; break; } if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRQ)) { dbgln("IDEChannel: {} {} device appears to be ATA.", channel_type_string(), channel_string(i)); interface_type = PATADiskDevice::InterfaceType::ATA; break; } } if (check_for_atapi) { u8 cl = m_io_group.io_base().offset(ATA_REG_LBA1).in(); u8 ch = m_io_group.io_base().offset(ATA_REG_LBA2).in(); if ((cl == 0x14 && ch == 0xEB) || (cl == 0x69 && ch == 0x96)) { interface_type = PATADiskDevice::InterfaceType::ATAPI; dbgln("IDEChannel: {} {} device appears to be ATAPI. We're going to ignore it for now as we don't support it.", channel_type_string(), channel_string(i)); continue; } else { dbgln("IDEChannel: {} {} device doesn't appear to be ATA or ATAPI. Ignoring it.", channel_type_string(), channel_string(i)); continue; } } ByteBuffer wbuf = ByteBuffer::create_uninitialized(512); ByteBuffer bbuf = ByteBuffer::create_uninitialized(512); u8* b = bbuf.data(); u16* w = (u16*)wbuf.data(); const u16* wbufbase = (u16*)wbuf.data(); for (u32 i = 0; i < 256; ++i) { u16 data = m_io_group.io_base().offset(ATA_REG_DATA).in(); *(w++) = data; *(b++) = MSB(data); *(b++) = LSB(data); } // "Unpad" the device name string. for (u32 i = 93; i > 54 && bbuf[i] == ' '; --i) bbuf[i] = 0; u16 cyls = wbufbase[ATA_IDENT_CYLINDERS / sizeof(u16)]; u16 heads = wbufbase[ATA_IDENT_HEADS / sizeof(u16)]; u16 spt = wbufbase[ATA_IDENT_SECTORS / sizeof(u16)]; u16 capabilities = wbufbase[ATA_IDENT_CAPABILITIES / sizeof(u16)]; if (cyls == 0 || heads == 0 || spt == 0) continue; dbgln("IDEChannel: {} {} device found: Type={}, Name={}, C/H/Spt={}/{}/{}, Capabilities=0x{:04x}", channel_type_string(), channel_string(i), interface_type == PATADiskDevice::InterfaceType::ATA ? "ATA" : "ATAPI", ((char*)bbuf.data() + 54), cyls, heads, spt, capabilities); if (i == 0) { m_master = PATADiskDevice::create(m_parent_controller, *this, PATADiskDevice::DriveType::Master, interface_type, cyls, heads, spt, capabilities, 3, (m_channel_type == ChannelType::Primary) ? 0 : 2); } else { m_slave = PATADiskDevice::create(m_parent_controller, *this, PATADiskDevice::DriveType::Slave, interface_type, cyls, heads, spt, capabilities, 3, (m_channel_type == ChannelType::Primary) ? 1 : 3); } } } void IDEChannel::ata_access(Direction direction, bool slave_request, u32 lba, u8 block_count, u16 capabilities, bool use_dma) { LBAMode lba_mode; u8 head = 0; u8 sector = 0; u16 cylinder = 0; if (lba >= 0x10000000) { ASSERT(capabilities & ATA_CAP_LBA); lba_mode = LBAMode::FortyEightBit; head = 0; } else if (capabilities & ATA_CAP_LBA) { lba_mode = LBAMode::TwentyEightBit; head = (lba & 0xF000000) >> 24; } else { lba_mode = LBAMode::None; sector = (lba % 63) + 1; cylinder = (lba + 1 - sector) / (16 * 63); head = (lba + 1 - sector) % (16 * 63) / (63); } wait_until_not_busy(); if (lba_mode == LBAMode::None) m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out(0xA0 | (static_cast(slave_request) << 4) | head); else m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out(0xE0 | (static_cast(slave_request) << 4) | head); if (lba_mode == LBAMode::FortyEightBit) { m_io_group.io_base().offset(ATA_REG_SECCOUNT1).out(0); m_io_group.io_base().offset(ATA_REG_LBA3).out((lba & 0xFF000000) >> 24); m_io_group.io_base().offset(ATA_REG_LBA4).out(0); m_io_group.io_base().offset(ATA_REG_LBA5).out(0); } m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out(block_count); if (lba_mode == LBAMode::FortyEightBit || lba_mode == LBAMode::TwentyEightBit) { m_io_group.io_base().offset(ATA_REG_LBA0).out((lba & 0x000000FF) >> 0); m_io_group.io_base().offset(ATA_REG_LBA1).out((lba & 0x0000FF00) >> 8); m_io_group.io_base().offset(ATA_REG_LBA2).out((lba & 0x00FF0000) >> 16); } else { m_io_group.io_base().offset(ATA_REG_LBA0).out(sector); m_io_group.io_base().offset(ATA_REG_LBA1).out((cylinder >> 0) & 0xFF); m_io_group.io_base().offset(ATA_REG_LBA2).out((cylinder >> 8) & 0xFF); } for (;;) { auto status = m_io_group.control_base().in(); if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY)) break; } if (lba_mode != LBAMode::FortyEightBit) { if (use_dma) m_io_group.io_base().offset(ATA_REG_COMMAND).out(direction == Direction::Read ? ATA_CMD_READ_DMA : ATA_CMD_WRITE_DMA); else m_io_group.io_base().offset(ATA_REG_COMMAND).out(direction == Direction::Read ? ATA_CMD_READ_PIO : ATA_CMD_WRITE_PIO); } else { if (use_dma) m_io_group.io_base().offset(ATA_REG_COMMAND).out(direction == Direction::Read ? ATA_CMD_READ_DMA_EXT : ATA_CMD_WRITE_DMA_EXT); else m_io_group.io_base().offset(ATA_REG_COMMAND).out(direction == Direction::Read ? ATA_CMD_READ_PIO_EXT : ATA_CMD_WRITE_PIO_EXT); } enable_irq(); } void IDEChannel::ata_read_sectors_with_dma(bool slave_request, u16 capabilities) { auto& request = *m_current_request; u32 lba = request.block_index(); dbgln("IDEChannel::ata_read_sectors_with_dma ({} x {})", lba, request.block_count()); prdt().offset = m_dma_buffer_page->paddr(); prdt().size = 512 * request.block_count(); ASSERT(prdt().size <= PAGE_SIZE); // Stop bus master m_io_group.bus_master_base().out(0); // Write the PRDT location m_io_group.bus_master_base().offset(4).out(m_prdt_page->paddr().get()); // Turn on "Interrupt" and "Error" flag. The error flag should be cleared by hardware. m_io_group.bus_master_base().offset(2).out(m_io_group.bus_master_base().offset(2).in() | 0x6); // Set transfer direction m_io_group.bus_master_base().out(0x8); ata_access(Direction::Read, slave_request, lba, request.block_count(), capabilities, true); // Start bus master m_io_group.bus_master_base().out(0x9); } bool IDEChannel::ata_do_read_sector() { dbgln("IDEChannel::ata_do_read_sector"); auto& request = *m_current_request; auto out_buffer = request.buffer().offset(m_current_request_block_index * 512); ssize_t nwritten = request.write_to_buffer_buffered<512>(out_buffer, 512, [&](u8* buffer, size_t buffer_bytes) { for (size_t i = 0; i < buffer_bytes; i += sizeof(u16)) *(u16*)&buffer[i] = IO::in16(m_io_group.io_base().offset(ATA_REG_DATA).get()); return (ssize_t)buffer_bytes; }); if (nwritten < 0) { // TODO: Do we need to abort the PATA read if this wasn't the last block? complete_current_request(AsyncDeviceRequest::MemoryFault); return false; } return true; } // FIXME: This doesn't quite work and locks up reading LBA 3. void IDEChannel::ata_read_sectors(bool slave_request, u16 capabilities) { auto& request = *m_current_request; ASSERT(request.block_count() <= 256); dbgln("IDEChannel::ata_read_sectors"); auto lba = request.block_index(); dbgln("IDEChannel: Reading {} sector(s) @ LBA {}", request.block_count(), lba); ata_access(Direction::Read, slave_request, lba, request.block_count(), capabilities, false); } void IDEChannel::ata_write_sectors_with_dma(bool slave_request, u16 capabilities) { auto& request = *m_current_request; u32 lba = request.block_index(); dbgln("IDEChannel::ata_write_sectors_with_dma ({} x {})", lba, request.block_count()); prdt().offset = m_dma_buffer_page->paddr(); prdt().size = 512 * request.block_count(); if (!request.read_from_buffer(request.buffer(), m_dma_buffer_page->paddr().offset(0xc0000000).as_ptr(), 512 * request.block_count())) { complete_current_request(AsyncDeviceRequest::MemoryFault); return; } ASSERT(prdt().size <= PAGE_SIZE); // Stop bus master m_io_group.bus_master_base().out(0); // Write the PRDT location m_io_group.bus_master_base().offset(4).out(m_prdt_page->paddr().get()); // Turn on "Interrupt" and "Error" flag. The error flag should be cleared by hardware. m_io_group.bus_master_base().offset(2).out(m_io_group.bus_master_base().offset(2).in() | 0x6); ata_access(Direction::Write, slave_request, lba, request.block_count(), capabilities, true); // Start bus master m_io_group.bus_master_base().out(0x1); } void IDEChannel::ata_do_write_sector() { auto& request = *m_current_request; io_delay(); while ((m_io_group.control_base().in() & ATA_SR_BSY) || !(m_io_group.control_base().in() & ATA_SR_DRQ)) ; u8 status = m_io_group.control_base().in(); ASSERT(status & ATA_SR_DRQ); auto in_buffer = request.buffer().offset(m_current_request_block_index * 512); dbgln("IDEChannel: Writing 512 bytes (part {}) (status={:#02x})...", m_current_request_block_index, status); ssize_t nread = request.read_from_buffer_buffered<512>(in_buffer, 512, [&](const u8* buffer, size_t buffer_bytes) { for (size_t i = 0; i < buffer_bytes; i += sizeof(u16)) IO::out16(m_io_group.io_base().offset(ATA_REG_DATA).get(), *(const u16*)&buffer[i]); return (ssize_t)buffer_bytes; }); if (nread < 0) complete_current_request(AsyncDeviceRequest::MemoryFault); } // FIXME: I'm assuming this doesn't work based on the fact PIO read doesn't work. void IDEChannel::ata_write_sectors(bool slave_request, u16 capabilities) { auto& request = *m_current_request; ASSERT(request.block_count() <= 256); u32 start_sector = request.block_index(); u32 count = request.block_count(); dbgln("IDEChannel: Writing {} sector(s) @ LBA {}", count, start_sector); ata_access(Direction::Write, slave_request, start_sector, request.block_count(), capabilities, false); ata_do_write_sector(); } }