LibGfx: Transcribe "Xiaolin Wu's line algorithm" more accurately

This improves the appearance of anti-aliased lines significantly.
This commit is contained in:
Andreas Kling 2022-03-19 21:50:58 +01:00
parent d09e8978c2
commit ab794a199b
Notes: sideshowbarker 2024-07-17 20:33:50 +09:00

View file

@ -10,11 +10,6 @@
#include <LibGfx/AntiAliasingPainter.h>
#include <LibGfx/Path.h>
static float fractional_part(float x)
{
return x - floorf(x);
}
// Base algorithm from https://en.wikipedia.org/wiki/Xiaolin_Wu%27s_line_algorithm,
// because there seems to be no other known method for drawing AA'd lines (?)
template<Gfx::AntiAliasingPainter::AntiAliasPolicy policy>
@ -25,76 +20,96 @@ void Gfx::AntiAliasingPainter::draw_anti_aliased_line(FloatPoint const& actual_f
auto corrected_thickness = thickness > 1 ? thickness - 1 : thickness;
auto size = IntSize(corrected_thickness, corrected_thickness);
auto draw_point = [&](FloatPoint const& point, Color color) {
auto center = m_transform.map(point).to_type<int>();
m_underlying_painter.fill_rect(Gfx::IntRect::centered_on(center, size), color);
auto plot = [&](int x, int y, float c) {
auto center = m_transform.map(Gfx::IntPoint(x, y)).to_type<int>();
m_underlying_painter.fill_rect(IntRect::centered_on(center, size), color.with_alpha(color.alpha() * c));
};
auto color_with_alpha = [&color](float new_alpha) {
return color.with_alpha(color.alpha() * new_alpha);
};
auto integer_part = [](float x) { return floorf(x); };
auto round = [&](float x) { return integer_part(x + 0.5f); };
auto fractional_part = [&](float x) { return x - floorf(x); };
auto one_minus_fractional_part = [&](float x) { return 1.0f - fractional_part(x); };
auto actual_distance = actual_to - actual_from;
auto from = actual_from;
auto to = actual_to;
auto is_steep = fabsf(actual_distance.y()) > fabsf(actual_distance.x());
auto draw_line = [&](float x0, float y0, float x1, float y1) {
bool steep = fabsf(y1 - y0) > fabsf(x1 - x0);
if (is_steep) {
from = { from.y(), from.x() };
to = { to.y(), to.x() };
}
if (from.x() > to.x())
swap(from, to);
auto distance = to - from;
auto gradient = fabsf(distance.x()) < 1e-10f ? 1.0f : distance.y() / distance.x();
auto draw_one_end = [&](auto& point) {
auto end_x = roundf(point.x());
auto end_point = FloatPoint { end_x, point.y() + gradient * (end_x - point.x()) };
auto x_gap = 1 - fractional_part(point.x() + 0.5f);
auto current_point = FloatPoint { end_point.x(), floorf(end_point.y()) };
if (is_steep) {
draw_point({ current_point.y(), current_point.x() }, color_with_alpha(x_gap * (1 - fractional_part(end_point.y()))));
draw_point({ current_point.y() + 1, current_point.x() }, color_with_alpha(x_gap * fractional_part(end_point.y())));
} else {
draw_point(current_point, color_with_alpha(x_gap * (1 - fractional_part(end_point.y())) * 255));
draw_point({ current_point.x(), current_point.y() + 1 }, color_with_alpha(x_gap * fractional_part(end_point.y())));
if (steep) {
swap(x0, y0);
swap(x1, y1);
}
if (x0 > x1) {
swap(x0, x1);
swap(y0, y1);
}
float dx = x1 - x0;
float dy = y1 - y0;
float gradient;
if (dx == 0.0f)
gradient = 1.0f;
else
gradient = dy / dx;
// Handle first endpoint.
int x_end = round(x0);
int y_end = y0 + gradient * (x_end - x0);
float x_gap = one_minus_fractional_part(x0 + 0.5f);
int xpxl1 = x_end; // This will be used in the main loop.
int ypxl1 = integer_part(y_end);
if (steep) {
plot(ypxl1, xpxl1, one_minus_fractional_part(y_end) * x_gap);
plot(ypxl1 + 1, xpxl1, fractional_part(y_end) * x_gap);
} else {
plot(xpxl1, ypxl1, one_minus_fractional_part(y_end) * x_gap);
plot(xpxl1, ypxl1 + 1, fractional_part(y_end) * x_gap);
}
float intery = y_end + gradient; // First y-intersection for the main loop.
// Handle second endpoint.
x_end = round(x1);
y_end = y1 + gradient * (x_end - x1);
x_gap = fractional_part(x1 + 0.5f);
int xpxl2 = x_end; // This will be used in the main loop
int ypxl2 = integer_part(y_end);
if (steep) {
plot(ypxl2, xpxl2, one_minus_fractional_part(y_end) * x_gap);
plot(ypxl2 + 1, xpxl2, fractional_part(y_end) * x_gap);
} else {
plot(xpxl2, ypxl2, one_minus_fractional_part(y_end) * x_gap);
plot(xpxl2, ypxl2 + 1, fractional_part(y_end) * x_gap);
}
// Main loop.
if (steep) {
for (int x = xpxl1 + 1; x <= xpxl2 - 1; ++x) {
if constexpr (policy == AntiAliasPolicy::OnlyEnds) {
plot(integer_part(intery), x, one_minus_fractional_part(intery));
} else {
plot(integer_part(intery), x, one_minus_fractional_part(intery));
}
plot(integer_part(intery) + 1, x, fractional_part(intery));
intery += gradient;
}
} else {
for (int x = xpxl1 + 1; x <= xpxl2 - 1; ++x) {
if constexpr (policy == AntiAliasPolicy::OnlyEnds) {
plot(x, integer_part(intery), 1);
} else {
plot(x, integer_part(intery), one_minus_fractional_part(intery));
}
plot(x, integer_part(intery) + 1, fractional_part(intery));
intery += gradient;
}
}
return end_point;
};
auto first_end_point = draw_one_end(from);
auto last_end_point = draw_one_end(to);
auto next_intersection = first_end_point.y() + gradient;
auto delta_x = 0.7f; // Should be max(fabsf(sin_x), fabsf(cos_x)) with fewer samples needed if the line is axis-aligned.
// but there's no point in doing expensive calculations when the delta range is so small (0.7-1.0)
// so instead, just pick the smallest delta.
auto delta_y = gradient * delta_x;
auto x = first_end_point.x();
while (x < last_end_point.x()) {
if (is_steep) {
if constexpr (policy == AntiAliasPolicy::OnlyEnds) {
draw_point({ floorf(next_intersection), x }, color);
} else {
draw_point({ floorf(next_intersection), x }, color_with_alpha(1 - fractional_part(next_intersection)));
}
draw_point({ floorf(next_intersection) + 1, x }, color_with_alpha(fractional_part(next_intersection)));
} else {
if constexpr (policy == AntiAliasPolicy::OnlyEnds) {
draw_point({ x, floorf(next_intersection) }, color);
} else {
draw_point({ x, floorf(next_intersection) }, color_with_alpha(1 - fractional_part(next_intersection)));
}
draw_point({ x, floorf(next_intersection) + 1 }, color_with_alpha(fractional_part(next_intersection)));
}
next_intersection += delta_y;
x += delta_x;
}
draw_line(actual_from.x(), actual_from.y(), actual_to.x(), actual_to.y());
}
void Gfx::AntiAliasingPainter::draw_aliased_line(FloatPoint const& actual_from, FloatPoint const& actual_to, Color color, float thickness, Gfx::Painter::LineStyle style, Color alternate_color)