/** * Copyright (c) 2021, Leon Sorokin * All rights reserved. (MIT Licensed) * * uPlot.js (μPlot) * A small, fast chart for time series, lines, areas, ohlc & bars * https://github.com/leeoniya/uPlot (v1.6.3) */ 'use strict'; const FEAT_TIME = true; function debounce(fn, time) { let pending = null; function run() { pending = null; fn(); } return function() { clearTimeout(pending); pending = setTimeout(run, time); } } // binary search for index of closest value function closestIdx(num, arr, lo, hi) { let mid; lo = lo || 0; hi = hi || arr.length - 1; let bitwise = hi <= 2147483647; while (hi - lo > 1) { mid = bitwise ? (lo + hi) >> 1 : floor((lo + hi) / 2); if (arr[mid] < num) lo = mid; else hi = mid; } if (num - arr[lo] <= arr[hi] - num) return lo; return hi; } function nonNullIdx(data, _i0, _i1, dir) { for (let i = dir == 1 ? _i0 : _i1; i >= _i0 && i <= _i1; i += dir) { if (data[i] != null) return i; } return -1; } function getMinMax(data, _i0, _i1, sorted) { // console.log("getMinMax()"); let _min = inf; let _max = -inf; if (sorted == 1) { _min = data[_i0]; _max = data[_i1]; } else if (sorted == -1) { _min = data[_i1]; _max = data[_i0]; } else { for (let i = _i0; i <= _i1; i++) { if (data[i] != null) { _min = min(_min, data[i]); _max = max(_max, data[i]); } } } return [_min, _max]; } function getMinMaxLog(data, _i0, _i1) { // console.log("getMinMax()"); let _min = inf; let _max = -inf; for (let i = _i0; i <= _i1; i++) { if (data[i] > 0) { _min = min(_min, data[i]); _max = max(_max, data[i]); } } return [ _min == inf ? 1 : _min, _max == -inf ? 10 : _max, ]; } const _fixedTuple = [0, 0]; function fixIncr(minIncr, maxIncr, minExp, maxExp) { _fixedTuple[0] = minExp < 0 ? roundDec(minIncr, -minExp) : minIncr; _fixedTuple[1] = maxExp < 0 ? roundDec(maxIncr, -maxExp) : maxIncr; return _fixedTuple; } function rangeLog(min, max, base, fullMags) { let logFn = base == 10 ? log10 : log2; if (min == max) { min /= base; max *= base; } let minExp, maxExp, minMaxIncrs; if (fullMags) { minExp = floor(logFn(min)); maxExp = ceil(logFn(max)); minMaxIncrs = fixIncr(pow(base, minExp), pow(base, maxExp), minExp, maxExp); min = minMaxIncrs[0]; max = minMaxIncrs[1]; } else { minExp = floor(logFn(min)); maxExp = floor(logFn(max)); minMaxIncrs = fixIncr(pow(base, minExp), pow(base, maxExp), minExp, maxExp); min = incrRoundDn(min, minMaxIncrs[0]); max = incrRoundUp(max, minMaxIncrs[1]); } return [min, max]; } const _eqRangePart = { pad: 0, soft: null, mode: 0, }; const _eqRange = { min: _eqRangePart, max: _eqRangePart, }; // this ensures that non-temporal/numeric y-axes get multiple-snapped padding added above/below // TODO: also account for incrs when snapping to ensure top of axis gets a tick & value function rangeNum(_min, _max, mult, extra) { if (isObj(mult)) return _rangeNum(_min, _max, mult); _eqRangePart.pad = mult; _eqRangePart.soft = extra ? 0 : null; _eqRangePart.mode = extra ? 3 : 0; return _rangeNum(_min, _max, _eqRange); } // nullish coalesce function ifNull(lh, rh) { return lh == null ? rh : lh; } function _rangeNum(_min, _max, cfg) { let cmin = cfg.min; let cmax = cfg.max; let padMin = ifNull(cmin.pad, 0); let padMax = ifNull(cmax.pad, 0); let hardMin = ifNull(cmin.hard, -inf); let hardMax = ifNull(cmax.hard, inf); let softMin = ifNull(cmin.soft, inf); let softMax = ifNull(cmax.soft, -inf); let softMinMode = ifNull(cmin.mode, 0); let softMaxMode = ifNull(cmax.mode, 0); let delta = _max - _min; let nonZeroDelta = delta || abs(_max) || 1e3; let mag = log10(nonZeroDelta); let base = pow(10, floor(mag)); let _padMin = nonZeroDelta * (delta == 0 ? (_min == 0 ? .1 : 1) : padMin); let _newMin = roundDec(incrRoundDn(_min - _padMin, base/10), 6); let _softMin = _min >= softMin && (softMinMode == 1 || softMinMode == 3 && _newMin <= softMin || softMinMode == 2 && _newMin >= softMin) ? softMin : inf; let minLim = max(hardMin, _newMin < _softMin && _min >= _softMin ? _softMin : min(_softMin, _newMin)); let _padMax = nonZeroDelta * (delta == 0 ? (_max == 0 ? .1 : 1) : padMax); let _newMax = roundDec(incrRoundUp(_max + _padMax, base/10), 6); let _softMax = _max <= softMax && (softMaxMode == 1 || softMaxMode == 3 && _newMax >= softMax || softMaxMode == 2 && _newMax <= softMax) ? softMax : -inf; let maxLim = min(hardMax, _newMax > _softMax && _max <= _softMax ? _softMax : max(_softMax, _newMax)); if (minLim == maxLim && minLim == 0) maxLim = 100; return [minLim, maxLim]; } // alternative: https://stackoverflow.com/a/2254896 const fmtNum = new Intl.NumberFormat(navigator.language).format; const M = Math; const abs = M.abs; const floor = M.floor; const round = M.round; const ceil = M.ceil; const min = M.min; const max = M.max; const pow = M.pow; const sqrt = M.sqrt; const log10 = M.log10; const log2 = M.log2; const PI = M.PI; const inf = Infinity; function incrRound(num, incr) { return round(num/incr)*incr; } function clamp(num, _min, _max) { return min(max(num, _min), _max); } function fnOrSelf(v) { return typeof v == "function" ? v : () => v; } const retArg1 = (_0, _1) => _1; const retNull = _ => null; function incrRoundUp(num, incr) { return ceil(num/incr)*incr; } function incrRoundDn(num, incr) { return floor(num/incr)*incr; } function roundDec(val, dec) { return round(val * (dec = 10**dec)) / dec; } const fixedDec = new Map(); function guessDec(num) { return ((""+num).split(".")[1] || "").length; } function genIncrs(base, minExp, maxExp, mults) { let incrs = []; let multDec = mults.map(guessDec); for (let exp = minExp; exp < maxExp; exp++) { let expa = abs(exp); let mag = roundDec(pow(base, exp), expa); for (let i = 0; i < mults.length; i++) { let _incr = mults[i] * mag; let dec = (_incr >= 0 && exp >= 0 ? 0 : expa) + (exp >= multDec[i] ? 0 : multDec[i]); let incr = roundDec(_incr, dec); incrs.push(incr); fixedDec.set(incr, dec); } } return incrs; } //export const assign = Object.assign; const EMPTY_OBJ = {}; const isArr = Array.isArray; function isStr(v) { return typeof v == 'string'; } function isObj(v) { let is = false; if (v != null) { let c = v.constructor; is = c == null || c == Object; } return is; } function copy(o) { let out; if (isArr(o)) out = o.map(copy); else if (isObj(o)) { out = {}; for (var k in o) out[k] = copy(o[k]); } else out = o; return out; } function assign(targ) { let args = arguments; for (let i = 1; i < args.length; i++) { let src = args[i]; for (let key in src) { if (isObj(targ[key])) assign(targ[key], copy(src[key])); else targ[key] = copy(src[key]); } } return targ; } // nullModes const NULL_IGNORE = 0; // all nulls are ignored, converted to undefined (e.g. spanGaps: true) const NULL_GAP = 1; // nulls are retained, alignment artifacts = undefined values (default) const NULL_EXPAND = 2; // nulls are expanded to include adjacent alignment artifacts (undefined values) // mark all filler nulls as explicit when adjacent to existing explicit nulls (minesweeper) function nullExpand(yVals, nullIdxs, alignedLen) { for (let i = 0, xi, lastNullIdx = -inf; i < nullIdxs.length; i++) { let nullIdx = nullIdxs[i]; if (nullIdx > lastNullIdx) { xi = nullIdx - 1; while (xi >= 0 && yVals[xi] == null) yVals[xi--] = null; xi = nullIdx + 1; while (xi < alignedLen && yVals[xi] == null) yVals[lastNullIdx = xi++] = null; } } } // nullModes is a tables-matched array indicating how to treat nulls in each series function join(tables, nullModes) { if (tables.length == 1) return tables[0]; let xVals = new Set(); for (let ti = 0; ti < tables.length; ti++) { let t = tables[ti]; let xs = t[0]; let len = xs.length; for (let i = 0; i < len; i++) xVals.add(xs[i]); } let data = [Array.from(xVals).sort((a, b) => a - b)]; let alignedLen = data[0].length; let xIdxs = new Map(); for (let i = 0; i < alignedLen; i++) xIdxs.set(data[0][i], i); for (let ti = 0; ti < tables.length; ti++) { let t = tables[ti]; let xs = t[0]; for (let si = 1; si < t.length; si++) { let ys = t[si]; let yVals = Array(alignedLen).fill(undefined); let nullMode = nullModes ? nullModes[ti][si] : NULL_GAP; let nullIdxs = []; for (let i = 0; i < ys.length; i++) { let yVal = ys[i]; let alignedIdx = xIdxs.get(xs[i]); if (yVal == null) { if (nullMode != NULL_IGNORE) { yVals[alignedIdx] = yVal; if (nullMode == NULL_EXPAND) nullIdxs.push(alignedIdx); } } else yVals[alignedIdx] = yVal; } nullExpand(yVals, nullIdxs, alignedLen); data.push(yVals); } } return data; } const microTask = typeof queueMicrotask == "undefined" ? fn => Promise.resolve().then(fn) : queueMicrotask; const WIDTH = "width"; const HEIGHT = "height"; const TOP = "top"; const BOTTOM = "bottom"; const LEFT = "left"; const RIGHT = "right"; const hexBlack = "#000"; const transparent = hexBlack + "0"; const mousemove = "mousemove"; const mousedown = "mousedown"; const mouseup = "mouseup"; const mouseenter = "mouseenter"; const mouseleave = "mouseleave"; const dblclick = "dblclick"; const resize = "resize"; const scroll = "scroll"; const pre = "u-"; const UPLOT = "uplot"; const ORI_HZ = pre + "hz"; const ORI_VT = pre + "vt"; const TITLE = pre + "title"; const WRAP = pre + "wrap"; const UNDER = pre + "under"; const OVER = pre + "over"; const OFF = pre + "off"; const SELECT = pre + "select"; const CURSOR_X = pre + "cursor-x"; const CURSOR_Y = pre + "cursor-y"; const CURSOR_PT = pre + "cursor-pt"; const LEGEND = pre + "legend"; const LEGEND_LIVE = pre + "live"; const LEGEND_INLINE = pre + "inline"; const LEGEND_THEAD = pre + "thead"; const LEGEND_SERIES = pre + "series"; const LEGEND_MARKER = pre + "marker"; const LEGEND_LABEL = pre + "label"; const LEGEND_VALUE = pre + "value"; const doc = document; const win = window; const pxRatio = devicePixelRatio; function addClass(el, c) { c != null && el.classList.add(c); } function remClass(el, c) { el.classList.remove(c); } function setStylePx(el, name, value) { el.style[name] = value + "px"; } function placeTag(tag, cls, targ, refEl) { let el = doc.createElement(tag); if (cls != null) addClass(el, cls); if (targ != null) targ.insertBefore(el, refEl); return el; } function placeDiv(cls, targ) { return placeTag("div", cls, targ); } function trans(el, xPos, yPos, xMax, yMax) { el.style.transform = "translate(" + xPos + "px," + yPos + "px)"; if (xPos < 0 || yPos < 0 || xPos > xMax || yPos > yMax) addClass(el, OFF); else remClass(el, OFF); } const evOpts = {passive: true}; function on(ev, el, cb) { el.addEventListener(ev, cb, evOpts); } function off(ev, el, cb) { el.removeEventListener(ev, cb, evOpts); } const months = [ "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ]; const days = [ "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", ]; function slice3(str) { return str.slice(0, 3); } const days3 = days.map(slice3); const months3 = months.map(slice3); const engNames = { MMMM: months, MMM: months3, WWWW: days, WWW: days3, }; function zeroPad2(int) { return (int < 10 ? '0' : '') + int; } function zeroPad3(int) { return (int < 10 ? '00' : int < 100 ? '0' : '') + int; } /* function suffix(int) { let mod10 = int % 10; return int + ( mod10 == 1 && int != 11 ? "st" : mod10 == 2 && int != 12 ? "nd" : mod10 == 3 && int != 13 ? "rd" : "th" ); } */ const getFullYear = 'getFullYear'; const getMonth = 'getMonth'; const getDate = 'getDate'; const getDay = 'getDay'; const getHours = 'getHours'; const getMinutes = 'getMinutes'; const getSeconds = 'getSeconds'; const getMilliseconds = 'getMilliseconds'; const subs = { // 2019 YYYY: d => d[getFullYear](), // 19 YY: d => (d[getFullYear]()+'').slice(2), // July MMMM: (d, names) => names.MMMM[d[getMonth]()], // Jul MMM: (d, names) => names.MMM[d[getMonth]()], // 07 MM: d => zeroPad2(d[getMonth]()+1), // 7 M: d => d[getMonth]()+1, // 09 DD: d => zeroPad2(d[getDate]()), // 9 D: d => d[getDate](), // Monday WWWW: (d, names) => names.WWWW[d[getDay]()], // Mon WWW: (d, names) => names.WWW[d[getDay]()], // 03 HH: d => zeroPad2(d[getHours]()), // 3 H: d => d[getHours](), // 9 (12hr, unpadded) h: d => {let h = d[getHours](); return h == 0 ? 12 : h > 12 ? h - 12 : h;}, // AM AA: d => d[getHours]() >= 12 ? 'PM' : 'AM', // am aa: d => d[getHours]() >= 12 ? 'pm' : 'am', // a a: d => d[getHours]() >= 12 ? 'p' : 'a', // 09 mm: d => zeroPad2(d[getMinutes]()), // 9 m: d => d[getMinutes](), // 09 ss: d => zeroPad2(d[getSeconds]()), // 9 s: d => d[getSeconds](), // 374 fff: d => zeroPad3(d[getMilliseconds]()), }; function fmtDate(tpl, names) { names = names || engNames; let parts = []; let R = /\{([a-z]+)\}|[^{]+/gi, m; while (m = R.exec(tpl)) parts.push(m[0][0] == '{' ? subs[m[1]] : m[0]); return d => { let out = ''; for (let i = 0; i < parts.length; i++) out += typeof parts[i] == "string" ? parts[i] : parts[i](d, names); return out; } } const localTz = new Intl.DateTimeFormat().resolvedOptions().timeZone; // https://stackoverflow.com/questions/15141762/how-to-initialize-a-javascript-date-to-a-particular-time-zone/53652131#53652131 function tzDate(date, tz) { let date2; // perf optimization if (tz == 'Etc/UTC') date2 = new Date(+date + date.getTimezoneOffset() * 6e4); else if (tz == localTz) date2 = date; else { date2 = new Date(date.toLocaleString('en-US', {timeZone: tz})); date2.setMilliseconds(date[getMilliseconds]()); } return date2; } //export const series = []; // default formatters: const onlyWhole = v => v % 1 == 0; const allMults = [1,2,2.5,5]; // ...0.01, 0.02, 0.025, 0.05, 0.1, 0.2, 0.25, 0.5 const decIncrs = genIncrs(10, -16, 0, allMults); // 1, 2, 2.5, 5, 10, 20, 25, 50... const oneIncrs = genIncrs(10, 0, 16, allMults); // 1, 2, 5, 10, 20, 25, 50... const wholeIncrs = oneIncrs.filter(onlyWhole); const numIncrs = decIncrs.concat(oneIncrs); const NL = "\n"; const yyyy = "{YYYY}"; const NLyyyy = NL + yyyy; const md = "{M}/{D}"; const NLmd = NL + md; const NLmdyy = NLmd + "/{YY}"; const aa = "{aa}"; const hmm = "{h}:{mm}"; const hmmaa = hmm + aa; const NLhmmaa = NL + hmmaa; const ss = ":{ss}"; const _ = null; function genTimeStuffs(ms) { let s = ms * 1e3, m = s * 60, h = m * 60, d = h * 24, mo = d * 30, y = d * 365; // min of 1e-3 prevents setting a temporal x ticks too small since Date objects cannot advance ticks smaller than 1ms let subSecIncrs = ms == 1 ? genIncrs(10, 0, 3, allMults).filter(onlyWhole) : genIncrs(10, -3, 0, allMults); let timeIncrs = subSecIncrs.concat([ // minute divisors (# of secs) s, s * 5, s * 10, s * 15, s * 30, // hour divisors (# of mins) m, m * 5, m * 10, m * 15, m * 30, // day divisors (# of hrs) h, h * 2, h * 3, h * 4, h * 6, h * 8, h * 12, // month divisors TODO: need more? d, d * 2, d * 3, d * 4, d * 5, d * 6, d * 7, d * 8, d * 9, d * 10, d * 15, // year divisors (# months, approx) mo, mo * 2, mo * 3, mo * 4, mo * 6, // century divisors y, y * 2, y * 5, y * 10, y * 25, y * 50, y * 100, ]); // [0]: minimum num secs in the tick incr // [1]: default tick format // [2-7]: rollover tick formats // [8]: mode: 0: replace [1] -> [2-7], 1: concat [1] + [2-7] const _timeAxisStamps = [ // tick incr default year month day hour min sec mode [y, yyyy, _, _, _, _, _, _, 1], [d * 28, "{MMM}", NLyyyy, _, _, _, _, _, 1], [d, md, NLyyyy, _, _, _, _, _, 1], [h, "{h}" + aa, NLmdyy, _, NLmd, _, _, _, 1], [m, hmmaa, NLmdyy, _, NLmd, _, _, _, 1], [s, ss, NLmdyy + " " + hmmaa, _, NLmd + " " + hmmaa, _, NLhmmaa, _, 1], [ms, ss + ".{fff}", NLmdyy + " " + hmmaa, _, NLmd + " " + hmmaa, _, NLhmmaa, _, 1], ]; // the ensures that axis ticks, values & grid are aligned to logical temporal breakpoints and not an arbitrary timestamp // https://www.timeanddate.com/time/dst/ // https://www.timeanddate.com/time/dst/2019.html // https://www.epochconverter.com/timezones function timeAxisSplits(tzDate) { return (self, axisIdx, scaleMin, scaleMax, foundIncr, foundSpace) => { let splits = []; let isYr = foundIncr >= y; let isMo = foundIncr >= mo && foundIncr < y; // get the timezone-adjusted date let minDate = tzDate(scaleMin); let minDateTs = minDate * ms; // get ts of 12am (this lands us at or before the original scaleMin) let minMin = mkDate(minDate[getFullYear](), isYr ? 0 : minDate[getMonth](), isMo || isYr ? 1 : minDate[getDate]()); let minMinTs = minMin * ms; if (isMo || isYr) { let moIncr = isMo ? foundIncr / mo : 0; let yrIncr = isYr ? foundIncr / y : 0; // let tzOffset = scaleMin - minDateTs; // needed? let split = minDateTs == minMinTs ? minDateTs : mkDate(minMin[getFullYear]() + yrIncr, minMin[getMonth]() + moIncr, 1) * ms; let splitDate = new Date(split / ms); let baseYear = splitDate[getFullYear](); let baseMonth = splitDate[getMonth](); for (let i = 0; split <= scaleMax; i++) { let next = mkDate(baseYear + yrIncr * i, baseMonth + moIncr * i, 1); let offs = next - tzDate(next * ms); split = (+next + offs) * ms; if (split <= scaleMax) splits.push(split); } } else { let incr0 = foundIncr >= d ? d : foundIncr; let tzOffset = floor(scaleMin) - floor(minDateTs); let split = minMinTs + tzOffset + incrRoundUp(minDateTs - minMinTs, incr0); splits.push(split); let date0 = tzDate(split); let prevHour = date0[getHours]() + (date0[getMinutes]() / m) + (date0[getSeconds]() / h); let incrHours = foundIncr / h; let minSpace = self.axes[axisIdx]._space; let pctSpace = foundSpace / minSpace; while (1) { split = roundDec(split + foundIncr, ms == 1 ? 0 : 3); if (split > scaleMax) break; if (incrHours > 1) { let expectedHour = floor(roundDec(prevHour + incrHours, 6)) % 24; let splitDate = tzDate(split); let actualHour = splitDate.getHours(); let dstShift = actualHour - expectedHour; if (dstShift > 1) dstShift = -1; split -= dstShift * h; prevHour = (prevHour + incrHours) % 24; // add a tick only if it's further than 70% of the min allowed label spacing let prevSplit = splits[splits.length - 1]; let pctIncr = roundDec((split - prevSplit) / foundIncr, 3); if (pctIncr * pctSpace >= .7) splits.push(split); } else splits.push(split); } } return splits; } } return [ timeIncrs, _timeAxisStamps, timeAxisSplits, ]; } const [ timeIncrsMs, _timeAxisStampsMs, timeAxisSplitsMs ] = genTimeStuffs(1); const [ timeIncrsS, _timeAxisStampsS, timeAxisSplitsS ] = genTimeStuffs(1e-3); // base 2 const binIncrs = genIncrs(2, -53, 53, [1]); /* console.log({ decIncrs, oneIncrs, wholeIncrs, numIncrs, timeIncrs, fixedDec, }); */ function timeAxisStamps(stampCfg, fmtDate) { return stampCfg.map(s => s.map((v, i) => i == 0 || i == 8 || v == null ? v : fmtDate(i == 1 || s[8] == 0 ? v : s[1] + v) )); } // TODO: will need to accept spaces[] and pull incr into the loop when grid will be non-uniform, eg for log scales. // currently we ignore this for months since they're *nearly* uniform and the added complexity is not worth it function timeAxisVals(tzDate, stamps) { return (self, splits, axisIdx, foundSpace, foundIncr) => { let s = stamps.find(s => foundIncr >= s[0]) || stamps[stamps.length - 1]; // these track boundaries when a full label is needed again let prevYear; let prevMnth; let prevDate; let prevHour; let prevMins; let prevSecs; return splits.map(split => { let date = tzDate(split); let newYear = date[getFullYear](); let newMnth = date[getMonth](); let newDate = date[getDate](); let newHour = date[getHours](); let newMins = date[getMinutes](); let newSecs = date[getSeconds](); let stamp = ( newYear != prevYear && s[2] || newMnth != prevMnth && s[3] || newDate != prevDate && s[4] || newHour != prevHour && s[5] || newMins != prevMins && s[6] || newSecs != prevSecs && s[7] || s[1] ); prevYear = newYear; prevMnth = newMnth; prevDate = newDate; prevHour = newHour; prevMins = newMins; prevSecs = newSecs; return stamp(date); }); } } // for when axis.values is defined as a static fmtDate template string function timeAxisVal(tzDate, dateTpl) { let stamp = fmtDate(dateTpl); return (self, splits, axisIdx, foundSpace, foundIncr) => splits.map(split => stamp(tzDate(split))); } function mkDate(y, m, d) { return new Date(y, m, d); } function timeSeriesStamp(stampCfg, fmtDate) { return fmtDate(stampCfg); } const _timeSeriesStamp = '{YYYY}-{MM}-{DD} {h}:{mm}{aa}'; function timeSeriesVal(tzDate, stamp) { return (self, val) => stamp(tzDate(val)); } const legendWidth = 2; const legendDash = "solid"; function legendStroke(self, seriesIdx) { let s = self.series[seriesIdx]; return s.width ? s.stroke(self, seriesIdx) : s.points.width ? s.points.stroke(self, seriesIdx) : null; } function legendFill(self, seriesIdx) { return self.series[seriesIdx].fill(self, seriesIdx); } function cursorPointShow(self, si) { let o = self.cursor.points; let pt = placeDiv(); let stroke = o.stroke(self, si); let fill = o.fill(self, si); pt.style.background = fill || stroke; let size = o.size(self, si); let width = o.width(self, si, size); if (width) pt.style.border = width + "px solid " + stroke; let mar = size / -2; setStylePx(pt, WIDTH, size); setStylePx(pt, HEIGHT, size); setStylePx(pt, "marginLeft", mar); setStylePx(pt, "marginTop", mar); return pt; } function cursorPointFill(self, si) { let s = self.series[si]; return s.stroke(self, si); } function cursorPointStroke(self, si) { let s = self.series[si]; return s.stroke(self, si); } function cursorPointSize(self, si) { let s = self.series[si]; return ptDia(s.width, 1); } function dataIdx(self, seriesIdx, cursorIdx) { return cursorIdx; } const moveTuple = [0,0]; function cursorMove(self, mouseLeft1, mouseTop1) { moveTuple[0] = mouseLeft1; moveTuple[1] = mouseTop1; return moveTuple; } function filtBtn0(self, targ, handle) { return e => { e.button == 0 && handle(e); }; } function passThru(self, targ, handle) { return handle; } const cursorOpts = { show: true, x: true, y: true, lock: false, move: cursorMove, points: { show: cursorPointShow, size: cursorPointSize, width: 0, stroke: cursorPointStroke, fill: cursorPointFill, }, bind: { mousedown: filtBtn0, mouseup: filtBtn0, click: filtBtn0, dblclick: filtBtn0, mousemove: passThru, mouseleave: passThru, mouseenter: passThru, }, drag: { setScale: true, x: true, y: false, dist: 0, uni: null, _x: false, _y: false, }, focus: { prox: -1, }, left: -10, top: -10, idx: null, dataIdx, }; const grid = { show: true, stroke: "rgba(0,0,0,0.07)", width: 2, // dash: [], filter: retArg1, }; const ticks = assign({}, grid, {size: 10}); const font = '12px system-ui, -apple-system, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji"'; const labelFont = "bold " + font; const lineMult = 1.5; // font-size multiplier const xAxisOpts = { show: true, scale: "x", stroke: hexBlack, space: 50, gap: 5, size: 50, labelSize: 30, labelFont, side: 2, // class: "x-vals", // incrs: timeIncrs, // values: timeVals, // filter: retArg1, grid, ticks, font, rotate: 0, }; const numSeriesLabel = "Value"; const timeSeriesLabel = "Time"; const xSeriesOpts = { show: true, scale: "x", auto: false, sorted: 1, // label: "Time", // value: v => stamp(new Date(v * 1e3)), // internal caches min: inf, max: -inf, idxs: [], }; function numAxisVals(self, splits, axisIdx, foundSpace, foundIncr) { return splits.map(v => v == null ? "" : fmtNum(v)); } function numAxisSplits(self, axisIdx, scaleMin, scaleMax, foundIncr, foundSpace, forceMin) { let splits = []; let numDec = fixedDec.get(foundIncr) || 0; scaleMin = forceMin ? scaleMin : roundDec(incrRoundUp(scaleMin, foundIncr), numDec); for (let val = scaleMin; val <= scaleMax; val = roundDec(val + foundIncr, numDec)) splits.push(Object.is(val, -0) ? 0 : val); // coalesces -0 return splits; } function logAxisSplits(self, axisIdx, scaleMin, scaleMax, foundIncr, foundSpace, forceMin) { const splits = []; const logBase = self.scales[self.axes[axisIdx].scale].log; const logFn = logBase == 10 ? log10 : log2; const exp = floor(logFn(scaleMin)); foundIncr = pow(logBase, exp); if (exp < 0) foundIncr = roundDec(foundIncr, -exp); let split = scaleMin; do { splits.push(split); split = roundDec(split + foundIncr, fixedDec.get(foundIncr)); if (split >= foundIncr * logBase) foundIncr = split; } while (split <= scaleMax); return splits; } const RE_ALL = /./; const RE_12357 = /[12357]/; const RE_125 = /[125]/; const RE_1 = /1/; function logAxisValsFilt(self, splits, axisIdx, foundSpace, foundIncr) { let axis = self.axes[axisIdx]; let scaleKey = axis.scale; if (self.scales[scaleKey].log == 2) return splits; let valToPos = self.valToPos; let minSpace = axis._space; let _10 = valToPos(10, scaleKey); let re = ( valToPos(9, scaleKey) - _10 >= minSpace ? RE_ALL : valToPos(7, scaleKey) - _10 >= minSpace ? RE_12357 : valToPos(5, scaleKey) - _10 >= minSpace ? RE_125 : RE_1 ); return splits.map(v => re.test(v) ? v : null); } function numSeriesVal(self, val) { return val == null ? "" : fmtNum(val); } const yAxisOpts = { show: true, scale: "y", stroke: hexBlack, space: 30, gap: 5, size: 50, labelSize: 30, labelFont, side: 3, // class: "y-vals", // incrs: numIncrs, // values: (vals, space) => vals, // filter: retArg1, grid, ticks, font, rotate: 0, }; // takes stroke width function ptDia(width, mult) { let dia = 3 + (width || 1) * 2; return roundDec(dia * mult, 3); } function seriesPoints(self, si) { const xsc = self.scales[self.series[0].scale]; const dim = xsc.ori == 0 ? self.bbox.width : self.bbox.height; const s = self.series[si]; // const dia = ptDia(s.width, pxRatio); let maxPts = dim / (s.points.space * pxRatio); let idxs = self.series[0].idxs; return idxs[1] - idxs[0] <= maxPts; } function seriesFillTo(self, seriesIdx, dataMin, dataMax) { let scale = self.scales[self.series[seriesIdx].scale]; let isUpperBandEdge = self.bands && self.bands.some(b => b.series[0] == seriesIdx); return scale.distr == 3 || isUpperBandEdge ? scale.min : 0; } const ySeriesOpts = { scale: "y", auto: true, sorted: 0, show: true, band: false, spanGaps: false, alpha: 1, points: { show: seriesPoints, // stroke: "#000", // fill: "#fff", // width: 1, // size: 10, }, // label: "Value", // value: v => v, values: null, // internal caches min: inf, max: -inf, idxs: [], path: null, clip: null, }; function clampScale(self, val, scaleMin, scaleMax, scaleKey) { /* if (val < 0) { let cssHgt = self.bbox.height / pxRatio; let absPos = self.valToPos(abs(val), scaleKey); let fromBtm = cssHgt - absPos; return self.posToVal(cssHgt + fromBtm, scaleKey); } */ return scaleMin / 10; } const xScaleOpts = { time: FEAT_TIME, auto: true, distr: 1, log: 10, min: null, max: null, dir: 1, ori: 0, }; const yScaleOpts = assign({}, xScaleOpts, { time: false, ori: 1, }); const syncs = {}; function _sync(opts) { let clients = []; return { sub(client) { clients.push(client); }, unsub(client) { clients = clients.filter(c => c != client); }, pub(type, self, x, y, w, h, i) { if (clients.length > 1) { clients.forEach(client => { client != self && client.pub(type, self, x, y, w, h, i); }); } } }; } function orient(u, seriesIdx, cb) { const series = u.series[seriesIdx]; const scales = u.scales; const bbox = u.bbox; const scaleX = scales[u.series[0].scale]; let dx = u._data[0], dy = u._data[seriesIdx], sx = scaleX, sy = scales[series.scale], l = bbox.left, t = bbox.top, w = bbox.width, h = bbox.height, H = u.valToPosH, V = u.valToPosV; return (sx.ori == 0 ? cb( series, dx, dy, sx, sy, H, V, l, t, w, h, moveToH, lineToH, rectH, arcH, bezierCurveToH, ) : cb( series, dx, dy, sx, sy, V, H, t, l, h, w, moveToV, lineToV, rectV, arcV, bezierCurveToV, ) ); } // creates inverted band clip path (towards from stroke path -> yMax) function clipBandLine(self, seriesIdx, idx0, idx1, strokePath) { return orient(self, seriesIdx, (series, dataX, dataY, scaleX, scaleY, valToPosX, valToPosY, xOff, yOff, xDim, yDim) => { const dir = scaleX.dir * (scaleX.ori == 0 ? 1 : -1); const lineTo = scaleX.ori == 0 ? lineToH : lineToV; let frIdx, toIdx; if (dir == 1) { frIdx = idx0; toIdx = idx1; } else { frIdx = idx1; toIdx = idx0; } // path start let x0 = incrRound(valToPosX(dataX[frIdx], scaleX, xDim, xOff), 0.5); let y0 = incrRound(valToPosY(dataY[frIdx], scaleY, yDim, yOff), 0.5); // path end x let x1 = incrRound(valToPosX(dataX[toIdx], scaleX, xDim, xOff), 0.5); // upper y limit let yLimit = incrRound(valToPosY(scaleY.max, scaleY, yDim, yOff), 0.5); let clip = new Path2D(strokePath); lineTo(clip, x1, yLimit); lineTo(clip, x0, yLimit); lineTo(clip, x0, y0); return clip; }); } function clipGaps(gaps, ori, plotLft, plotTop, plotWid, plotHgt) { let clip = null; // create clip path (invert gaps and non-gaps) if (gaps.length > 0) { clip = new Path2D(); const rect = ori == 0 ? rectH : rectV; let prevGapEnd = plotLft; for (let i = 0; i < gaps.length; i++) { let g = gaps[i]; rect(clip, prevGapEnd, plotTop, g[0] - prevGapEnd, plotTop + plotHgt); prevGapEnd = g[1]; } rect(clip, prevGapEnd, plotTop, plotLft + plotWid - prevGapEnd, plotTop + plotHgt); } return clip; } function addGap(gaps, fromX, toX) { if (toX > fromX) { let prevGap = gaps[gaps.length - 1]; if (prevGap && prevGap[0] == fromX) // TODO: gaps must be encoded at stroke widths? prevGap[1] = toX; else gaps.push([fromX, toX]); } } // orientation-inverting canvas functions function moveToH(p, x, y) { p.moveTo(x, y); } function moveToV(p, y, x) { p.moveTo(x, y); } function lineToH(p, x, y) { p.lineTo(x, y); } function lineToV(p, y, x) { p.lineTo(x, y); } function rectH(p, x, y, w, h) { p.rect(x, y, w, h); } function rectV(p, y, x, h, w) { p.rect(x, y, w, h); } function arcH(p, x, y, r, startAngle, endAngle) { p.arc(x, y, r, startAngle, endAngle); } function arcV(p, y, x, r, startAngle, endAngle) { p.arc(x, y, r, startAngle, endAngle); } function bezierCurveToH(p, bp1x, bp1y, bp2x, bp2y, p2x, p2y) { p.bezierCurveTo(bp1x, bp1y, bp2x, bp2y, p2x, p2y); }function bezierCurveToV(p, bp1y, bp1x, bp2y, bp2x, p2y, p2x) { p.bezierCurveTo(bp1x, bp1y, bp2x, bp2y, p2x, p2y); } function _drawAcc(lineTo) { return (stroke, accX, minY, maxY, outY) => { lineTo(stroke, accX, minY); lineTo(stroke, accX, maxY); lineTo(stroke, accX, outY); }; } const drawAccH = _drawAcc(lineToH); const drawAccV = _drawAcc(lineToV); function linear() { return (u, seriesIdx, idx0, idx1) => { return orient(u, seriesIdx, (series, dataX, dataY, scaleX, scaleY, valToPosX, valToPosY, xOff, yOff, xDim, yDim) => { let lineTo, drawAcc; if (scaleX.ori == 0) { lineTo = lineToH; drawAcc = drawAccH; } else { lineTo = lineToV; drawAcc = drawAccV; } const dir = scaleX.dir * (scaleX.ori == 0 ? 1 : -1); const _paths = {stroke: new Path2D(), fill: null, clip: null, band: null}; const stroke = _paths.stroke; let minY = inf, maxY = -inf, outY, outX, drawnAtX; let gaps = []; let accX = round(valToPosX(dataX[dir == 1 ? idx0 : idx1], scaleX, xDim, xOff)); let accGaps = false; // data edges let lftIdx = nonNullIdx(dataY, idx0, idx1, 1 * dir); let rgtIdx = nonNullIdx(dataY, idx0, idx1, -1 * dir); let lftX = incrRound(valToPosX(dataX[lftIdx], scaleX, xDim, xOff), 0.5); let rgtX = incrRound(valToPosX(dataX[rgtIdx], scaleX, xDim, xOff), 0.5); if (lftX > xOff) addGap(gaps, xOff, lftX); for (let i = dir == 1 ? idx0 : idx1; i >= idx0 && i <= idx1; i += dir) { let x = round(valToPosX(dataX[i], scaleX, xDim, xOff)); if (x == accX) { if (dataY[i] != null) { outY = round(valToPosY(dataY[i], scaleY, yDim, yOff)); if (minY == inf) lineTo(stroke, x, outY); minY = min(outY, minY); maxY = max(outY, maxY); } else if (!accGaps && dataY[i] === null) accGaps = true; } else { let _addGap = false; if (minY != inf) { drawAcc(stroke, accX, minY, maxY, outY); outX = drawnAtX = accX; } else if (accGaps) { _addGap = true; accGaps = false; } if (dataY[i] != null) { outY = round(valToPosY(dataY[i], scaleY, yDim, yOff)); lineTo(stroke, x, outY); minY = maxY = outY; // prior pixel can have data but still start a gap if ends with null if (x - accX > 1 && dataY[i - dir] === null) _addGap = true; } else { minY = inf; maxY = -inf; if (!accGaps && dataY[i] === null) accGaps = true; } _addGap && addGap(gaps, outX, x); accX = x; } } if (minY != inf && minY != maxY && drawnAtX != accX) drawAcc(stroke, accX, minY, maxY, outY); if (rgtX < xOff + xDim) addGap(gaps, rgtX, xOff + xDim); if (series.fill != null) { let fill = _paths.fill = new Path2D(stroke); let fillTo = round(valToPosY(series.fillTo(u, seriesIdx, series.min, series.max), scaleY, yDim, yOff)); lineTo(fill, rgtX, fillTo); lineTo(fill, lftX, fillTo); } if (!series.spanGaps) _paths.clip = clipGaps(gaps, scaleX.ori, xOff, yOff, xDim, yDim); if (u.bands.length > 0) { // ADDL OPT: only create band clips for series that are band lower edges // if (b.series[1] == i && _paths.band == null) _paths.band = clipBandLine(u, seriesIdx, idx0, idx1, stroke); } return _paths; }); }; } function spline(opts) { return (u, seriesIdx, idx0, idx1) => { return orient(u, seriesIdx, (series, dataX, dataY, scaleX, scaleY, valToPosX, valToPosY, xOff, yOff, xDim, yDim) => { let moveTo, bezierCurveTo, lineTo; if (scaleX.ori == 0) { moveTo = moveToH; lineTo = lineToH; bezierCurveTo = bezierCurveToH; } else { moveTo = moveToV; lineTo = lineToV; bezierCurveTo = bezierCurveToV; } const _dir = 1 * scaleX.dir * (scaleX.ori == 0 ? 1 : -1); idx0 = nonNullIdx(dataY, idx0, idx1, 1); idx1 = nonNullIdx(dataY, idx0, idx1, -1); let gaps = []; let inGap = false; let firstXPos = round(valToPosX(dataX[_dir == 1 ? idx0 : idx1], scaleX, xDim, xOff)); let prevXPos = firstXPos; let xCoords = []; let yCoords = []; for (let i = _dir == 1 ? idx0 : idx1; i >= idx0 && i <= idx1; i += _dir) { let yVal = dataY[i]; let xVal = dataX[i]; let xPos = valToPosX(xVal, scaleX, xDim, xOff); if (yVal == null) { if (yVal === null) { addGap(gaps, prevXPos, xPos); inGap = true; } continue; } else { if (inGap) { addGap(gaps, prevXPos, xPos); inGap = false; } xCoords.push((prevXPos = xPos)); yCoords.push(valToPosY(dataY[i], scaleY, yDim, yOff)); } } const _paths = {stroke: catmullRomFitting(xCoords, yCoords, 0.5, moveTo, bezierCurveTo), fill: null, clip: null, band: null}; const stroke = _paths.stroke; if (series.fill != null) { let fill = _paths.fill = new Path2D(stroke); let fillTo = series.fillTo(u, seriesIdx, series.min, series.max); let minY = round(valToPosY(fillTo, scaleY, yDim, yOff)); lineTo(fill, prevXPos, minY); lineTo(fill, firstXPos, minY); } if (!series.spanGaps) _paths.clip = clipGaps(gaps, scaleX.ori, xOff, yOff, xDim, yDim); if (u.bands.length > 0) { // ADDL OPT: only create band clips for series that are band lower edges // if (b.series[1] == i && _paths.band == null) _paths.band = clipBandLine(u, seriesIdx, idx0, idx1, stroke); } return _paths; // if FEAT_PATHS: false in rollup.config.js // u.ctx.save(); // u.ctx.beginPath(); // u.ctx.rect(u.bbox.left, u.bbox.top, u.bbox.width, u.bbox.height); // u.ctx.clip(); // u.ctx.strokeStyle = u.series[sidx].stroke; // u.ctx.stroke(stroke); // u.ctx.fillStyle = u.series[sidx].fill; // u.ctx.fill(fill); // u.ctx.restore(); // return null; }); }; } // adapted from https://gist.github.com/nicholaswmin/c2661eb11cad5671d816 (MIT) /** * Interpolates a Catmull-Rom Spline through a series of x/y points * Converts the CR Spline to Cubic Beziers for use with SVG items * * If 'alpha' is 0.5 then the 'Centripetal' variant is used * If 'alpha' is 1 then the 'Chordal' variant is used * */ function catmullRomFitting(xCoords, yCoords, alpha, moveTo, bezierCurveTo) { const path = new Path2D(); const dataLen = xCoords.length; let p0x, p0y, p1x, p1y, p2x, p2y, p3x, p3y, bp1x, bp1y, bp2x, bp2y, d1, d2, d3, A, B, N, M, d3powA, d2powA, d3pow2A, d2pow2A, d1pow2A, d1powA; moveTo(path, round(xCoords[0]), round(yCoords[0])); for (let i = 0; i < dataLen - 1; i++) { let p0i = i == 0 ? 0 : i - 1; p0x = xCoords[p0i]; p0y = yCoords[p0i]; p1x = xCoords[i]; p1y = yCoords[i]; p2x = xCoords[i + 1]; p2y = yCoords[i + 1]; if (i + 2 < dataLen) { p3x = xCoords[i + 2]; p3y = yCoords[i + 2]; } else { p3x = p2x; p3y = p2y; } d1 = sqrt(pow(p0x - p1x, 2) + pow(p0y - p1y, 2)); d2 = sqrt(pow(p1x - p2x, 2) + pow(p1y - p2y, 2)); d3 = sqrt(pow(p2x - p3x, 2) + pow(p2y - p3y, 2)); // Catmull-Rom to Cubic Bezier conversion matrix // A = 2d1^2a + 3d1^a * d2^a + d3^2a // B = 2d3^2a + 3d3^a * d2^a + d2^2a // [ 0 1 0 0 ] // [ -d2^2a /N A/N d1^2a /N 0 ] // [ 0 d3^2a /M B/M -d2^2a /M ] // [ 0 0 1 0 ] d3powA = pow(d3, alpha); d3pow2A = pow(d3, alpha * 2); d2powA = pow(d2, alpha); d2pow2A = pow(d2, alpha * 2); d1powA = pow(d1, alpha); d1pow2A = pow(d1, alpha * 2); A = 2 * d1pow2A + 3 * d1powA * d2powA + d2pow2A; B = 2 * d3pow2A + 3 * d3powA * d2powA + d2pow2A; N = 3 * d1powA * (d1powA + d2powA); if (N > 0) N = 1 / N; M = 3 * d3powA * (d3powA + d2powA); if (M > 0) M = 1 / M; bp1x = (-d2pow2A * p0x + A * p1x + d1pow2A * p2x) * N; bp1y = (-d2pow2A * p0y + A * p1y + d1pow2A * p2y) * N; bp2x = (d3pow2A * p1x + B * p2x - d2pow2A * p3x) * M; bp2y = (d3pow2A * p1y + B * p2y - d2pow2A * p3y) * M; if (bp1x == 0 && bp1y == 0) { bp1x = p1x; bp1y = p1y; } if (bp2x == 0 && bp2y == 0) { bp2x = p2x; bp2y = p2y; } bezierCurveTo(path, bp1x, bp1y, bp2x, bp2y, p2x, p2y); } return path; } function stepped(opts) { const align = ifNull(opts.align, 1); return (u, seriesIdx, idx0, idx1) => { return orient(u, seriesIdx, (series, dataX, dataY, scaleX, scaleY, valToPosX, valToPosY, xOff, yOff, xDim, yDim) => { let lineTo = scaleX.ori == 0 ? lineToH : lineToV; const _paths = {stroke: new Path2D(), fill: null, clip: null, band: null}; const stroke = _paths.stroke; const _dir = 1 * scaleX.dir * (scaleX.ori == 0 ? 1 : -1); idx0 = nonNullIdx(dataY, idx0, idx1, 1); idx1 = nonNullIdx(dataY, idx0, idx1, -1); let gaps = []; let inGap = false; let prevYPos = round(valToPosY(dataY[_dir == 1 ? idx0 : idx1], scaleY, yDim, yOff)); let firstXPos = round(valToPosX(dataX[_dir == 1 ? idx0 : idx1], scaleX, xDim, xOff)); let prevXPos = firstXPos; lineTo(stroke, firstXPos, prevYPos); for (let i = _dir == 1 ? idx0 : idx1; i >= idx0 && i <= idx1; i += _dir) { let yVal1 = dataY[i]; let x1 = round(valToPosX(dataX[i], scaleX, xDim, xOff)); if (yVal1 == null) { if (yVal1 === null) { addGap(gaps, prevXPos, x1); inGap = true; } continue; } let y1 = round(valToPosY(yVal1, scaleY, yDim, yOff)); if (inGap) { addGap(gaps, prevXPos, x1); // don't clip vertical extenders if (prevYPos != y1) { let halfStroke = (series.width * pxRatio) / 2; let lastGap = gaps[gaps.length - 1]; lastGap[0] += halfStroke; lastGap[1] -= halfStroke; } inGap = false; } if (align == 1) lineTo(stroke, x1, prevYPos); else lineTo(stroke, prevXPos, y1); lineTo(stroke, x1, y1); prevYPos = y1; prevXPos = x1; } if (series.fill != null) { let fill = _paths.fill = new Path2D(stroke); let fillTo = series.fillTo(u, seriesIdx, series.min, series.max); let minY = round(valToPosY(fillTo, scaleY, yDim, yOff)); lineTo(fill, prevXPos, minY); lineTo(fill, firstXPos, minY); } if (!series.spanGaps) _paths.clip = clipGaps(gaps, scaleX.ori, xOff, yOff, xDim, yDim); if (u.bands.length > 0) { // ADDL OPT: only create band clips for series that are band lower edges // if (b.series[1] == i && _paths.band == null) _paths.band = clipBandLine(u, seriesIdx, idx0, idx1, stroke); } return _paths; }); }; } function bars(opts) { opts = opts || EMPTY_OBJ; const size = ifNull(opts.size, [0.6, inf]); const align = opts.align || 0; const gapFactor = 1 - size[0]; const maxWidth = ifNull(size[1], inf) * pxRatio; return (u, seriesIdx, idx0, idx1) => { return orient(u, seriesIdx, (series, dataX, dataY, scaleX, scaleY, valToPosX, valToPosY, xOff, yOff, xDim, yDim) => { let rect = scaleX.ori == 0 ? rectH : rectV; let colWid = valToPosX(dataX[1], scaleX, xDim, xOff) - valToPosX(dataX[0], scaleX, xDim, xOff); let gapWid = colWid * gapFactor; let fillToY = series.fillTo(u, seriesIdx, series.min, series.max); let y0Pos = valToPosY(fillToY, scaleY, yDim, yOff); let strokeWidth = round(series.width * pxRatio); let barWid = round(min(maxWidth, colWid - gapWid) - strokeWidth); let xShift = align == 1 ? 0 : align == -1 ? barWid : barWid / 2; const _paths = {stroke: new Path2D(), fill: null, clip: null, band: null}; const hasBands = u.bands.length > 0; let yLimit; if (hasBands) { // ADDL OPT: only create band clips for series that are band lower edges // if (b.series[1] == i && _paths.band == null) _paths.band = new Path2D(); yLimit = incrRound(valToPosY(scaleY.max, scaleY, yDim, yOff), 0.5); } const stroke = _paths.stroke; const band = _paths.band; const _dir = scaleX.dir * (scaleX.ori == 0 ? 1 : -1); for (let i = _dir == 1 ? idx0 : idx1; i >= idx0 && i <= idx1; i += _dir) { let yVal = dataY[i]; // interpolate upwards band clips if (yVal == null) { if (hasBands) { // simple, but inefficient bi-directinal linear scans on each iteration let prevNonNull = nonNullIdx(dataY, _dir == 1 ? idx0 : idx1, i, -_dir); let nextNonNull = nonNullIdx(dataY, i, _dir == 1 ? idx1 : idx0, _dir); let prevVal = dataY[prevNonNull]; let nextVal = dataY[nextNonNull]; yVal = prevVal + (i - prevNonNull) / (nextNonNull - prevNonNull) * (nextVal - prevVal); } else continue; } let xVal = scaleX.distr == 2 ? i : dataX[i]; // TODO: all xPos can be pre-computed once for all series in aligned set let xPos = valToPosX(xVal, scaleX, xDim, xOff); let yPos = valToPosY(yVal, scaleY, yDim, yOff); let lft = round(xPos - xShift); let btm = round(max(yPos, y0Pos)); let top = round(min(yPos, y0Pos)); let barHgt = btm - top; dataY[i] != null && rect(stroke, lft, top, barWid, barHgt); if (hasBands) { btm = top; top = yLimit; barHgt = btm - top; rect(band, lft, top, barWid, barHgt); } } if (series.fill != null) _paths.fill = new Path2D(stroke); return _paths; }); }; } const linearPath = linear() ; function setDefaults(d, xo, yo, initY) { let d2 = initY ? [d[0], d[1]].concat(d.slice(2)) : [d[0]].concat(d.slice(1)); return d2.map((o, i) => setDefault(o, i, xo, yo)); } function setDefault(o, i, xo, yo) { return assign({}, (i == 0 ? xo : yo), o); } const nullMinMax = [null, null]; function snapNumX(self, dataMin, dataMax) { return dataMin == null ? nullMinMax : [dataMin, dataMax]; } const snapTimeX = snapNumX; // this ensures that non-temporal/numeric y-axes get multiple-snapped padding added above/below // TODO: also account for incrs when snapping to ensure top of axis gets a tick & value function snapNumY(self, dataMin, dataMax) { return dataMin == null ? nullMinMax : rangeNum(dataMin, dataMax, 0.1, true); } function snapLogY(self, dataMin, dataMax, scale) { return dataMin == null ? nullMinMax : rangeLog(dataMin, dataMax, self.scales[scale].log, false); } const snapLogX = snapLogY; // dim is logical (getClientBoundingRect) pixels, not canvas pixels function findIncr(min, max, incrs, dim, minSpace) { let pxPerUnit = dim / (max - min); let minDec = (""+floor(min)).length; for (var i = 0; i < incrs.length; i++) { let space = incrs[i] * pxPerUnit; let incrDec = incrs[i] < 10 ? fixedDec.get(incrs[i]) : 0; if (space >= minSpace && minDec + incrDec < 17) return [incrs[i], space]; } return [0, 0]; } function pxRatioFont(font) { let fontSize; font = font.replace(/(\d+)px/, (m, p1) => (fontSize = round(p1 * pxRatio)) + 'px'); return [font, fontSize]; } function uPlot(opts, data, then) { const self = {}; function getValPct(val, scale) { return ( scale.distr == 3 ? log10((val > 0 ? val : scale.clamp(self, val, scale.min, scale.max, scale.key)) / scale.min) / log10(scale.max / scale.min) : (val - scale.min) / (scale.max - scale.min) ); } function getHPos(val, scale, dim, off) { let pct = getValPct(val, scale); return off + dim * (scale.dir == -1 ? (1 - pct) : pct); } function getVPos(val, scale, dim, off) { let pct = getValPct(val, scale); return off + dim * (scale.dir == -1 ? pct : (1 - pct)); } function getPos(val, scale, dim, off) { return scale.ori == 0 ? getHPos(val, scale, dim, off) : getVPos(val, scale, dim, off); } self.valToPosH = getHPos; self.valToPosV = getVPos; let ready = false; self.status = 0; const root = self.root = placeDiv(UPLOT); if (opts.id != null) root.id = opts.id; addClass(root, opts.class); if (opts.title) { let title = placeDiv(TITLE, root); title.textContent = opts.title; } const can = placeTag("canvas"); const ctx = self.ctx = can.getContext("2d"); const wrap = placeDiv(WRAP, root); const under = placeDiv(UNDER, wrap); wrap.appendChild(can); const over = placeDiv(OVER, wrap); opts = copy(opts); (opts.plugins || []).forEach(p => { if (p.opts) opts = p.opts(self, opts) || opts; }); const ms = opts.ms || 1e-3; const series = self.series = setDefaults(opts.series || [], xSeriesOpts, ySeriesOpts, false); const axes = self.axes = setDefaults(opts.axes || [], xAxisOpts, yAxisOpts, true); const scales = self.scales = {}; const bands = self.bands = opts.bands || []; bands.forEach(b => { b.fill = fnOrSelf(b.fill || null); }); const xScaleKey = series[0].scale; const drawOrderMap = { axes: drawAxesGrid, series: drawSeries, }; const drawOrder = (opts.drawOrder || ["axes", "series"]).map(key => drawOrderMap[key]); function initScale(scaleKey) { let sc = scales[scaleKey]; if (sc == null) { let scaleOpts = (opts.scales || EMPTY_OBJ)[scaleKey] || EMPTY_OBJ; if (scaleOpts.from != null) { // ensure parent is initialized initScale(scaleOpts.from); // dependent scales inherit scales[scaleKey] = assign({}, scales[scaleOpts.from], scaleOpts); } else { sc = scales[scaleKey] = assign({}, (scaleKey == xScaleKey ? xScaleOpts : yScaleOpts), scaleOpts); sc.key = scaleKey; let isTime = sc.time; let isLog = sc.distr == 3; let rn = sc.range; if (scaleKey != xScaleKey && !isArr(rn) && isObj(rn)) { let cfg = rn; // this is similar to snapNumY rn = (self, dataMin, dataMax) => dataMin == null ? nullMinMax : rangeNum(dataMin, dataMax, cfg); } sc.range = fnOrSelf(rn || (isTime ? snapTimeX : scaleKey == xScaleKey ? (isLog ? snapLogX : snapNumX) : (isLog ? snapLogY : snapNumY))); sc.auto = fnOrSelf(sc.auto); sc.clamp = fnOrSelf(sc.clamp || clampScale); } } } initScale("x"); initScale("y"); series.forEach(s => { initScale(s.scale); }); axes.forEach(a => { initScale(a.scale); }); for (let k in opts.scales) initScale(k); const scaleX = scales[xScaleKey]; const xScaleDistr = scaleX.distr; let valToPosX, valToPosY, moveTo, arc; if (scaleX.ori == 0) { addClass(root, ORI_HZ); valToPosX = getHPos; valToPosY = getVPos; moveTo = moveToH; arc = arcH; /* updOriDims = () => { xDimCan = plotWid; xOffCan = plotLft; yDimCan = plotHgt; yOffCan = plotTop; xDimCss = plotWidCss; xOffCss = plotLftCss; yDimCss = plotHgtCss; yOffCss = plotTopCss; }; */ } else { addClass(root, ORI_VT); valToPosX = getVPos; valToPosY = getHPos; moveTo = moveToV; arc = arcV; /* updOriDims = () => { xDimCan = plotHgt; xOffCan = plotTop; yDimCan = plotWid; yOffCan = plotLft; xDimCss = plotHgtCss; xOffCss = plotTopCss; yDimCss = plotWidCss; yOffCss = plotLftCss; }; */ } const pendScales = {}; // explicitly-set initial scales for (let k in scales) { let sc = scales[k]; if (sc.min != null || sc.max != null) pendScales[k] = {min: sc.min, max: sc.max}; } // self.tz = opts.tz || Intl.DateTimeFormat().resolvedOptions().timeZone; const _tzDate = (opts.tzDate || (ts => new Date(ts / ms))); const _fmtDate = (opts.fmtDate || fmtDate); const _timeAxisSplits = (ms == 1 ? timeAxisSplitsMs(_tzDate) : timeAxisSplitsS(_tzDate)); const _timeAxisVals = timeAxisVals(_tzDate, timeAxisStamps((ms == 1 ? _timeAxisStampsMs : _timeAxisStampsS), _fmtDate)); const _timeSeriesVal = timeSeriesVal(_tzDate, timeSeriesStamp(_timeSeriesStamp, _fmtDate)); const legend = assign({show: true, live: true}, opts.legend); const showLegend = legend.show; { legend.width = fnOrSelf(ifNull(legend.width, legendWidth)); legend.dash = fnOrSelf(legend.dash || legendDash); legend.stroke = fnOrSelf(legend.stroke || legendStroke); legend.fill = fnOrSelf(legend.fill || legendFill); } let legendEl; let legendRows = []; let legendCols; let multiValLegend = false; if (showLegend) { legendEl = placeTag("table", LEGEND, root); const getMultiVals = series[1] ? series[1].values : null; multiValLegend = getMultiVals != null; if (multiValLegend) { let head = placeTag("tr", LEGEND_THEAD, legendEl); placeTag("th", null, head); legendCols = getMultiVals(self, 1, 0); for (var key in legendCols) placeTag("th", LEGEND_LABEL, head).textContent = key; } else { legendCols = {_: 0}; addClass(legendEl, LEGEND_INLINE); legend.live && addClass(legendEl, LEGEND_LIVE); } } function initLegendRow(s, i) { if (i == 0 && (multiValLegend || !legend.live)) return null; let _row = []; let row = placeTag("tr", LEGEND_SERIES, legendEl, legendEl.childNodes[i]); addClass(row, s.class); if (!s.show) addClass(row, OFF); let label = placeTag("th", null, row); let indic = placeDiv(LEGEND_MARKER, label); if (i > 0) { let width = legend.width(self, i); if (width) indic.style.border = width + "px " + legend.dash(self, i) + " " + legend.stroke(self, i); indic.style.background = legend.fill(self, i); } let text = placeDiv(LEGEND_LABEL, label); text.textContent = s.label; if (i > 0) { onMouse("click", label, e => { if ( cursor._lock) return; setSeries(series.indexOf(s), {show: !s.show}, syncOpts.setSeries); }); if (cursorFocus) { onMouse(mouseenter, label, e => { if (cursor._lock) return; setSeries(series.indexOf(s), FOCUS_TRUE, syncOpts.setSeries); }); } } for (var key in legendCols) { let v = placeTag("td", LEGEND_VALUE, row); v.textContent = "--"; _row.push(v); } return _row; } const mouseListeners = new Map(); function onMouse(ev, targ, fn) { const targListeners = mouseListeners.get(targ) || {}; const listener = cursor.bind[ev](self, targ, fn); if (listener) { on(ev, targ, targListeners[ev] = listener); mouseListeners.set(targ, targListeners); } } function offMouse(ev, targ, fn) { const targListeners = mouseListeners.get(targ) || {}; off(ev, targ, targListeners[ev]); targListeners[ev] = null; } let fullWidCss = 0; let fullHgtCss = 0; let plotWidCss = 0; let plotHgtCss = 0; // plot margins to account for axes let plotLftCss = 0; let plotTopCss = 0; let plotLft = 0; let plotTop = 0; let plotWid = 0; let plotHgt = 0; self.bbox = {}; let shouldSetScales = false; let shouldSetSize = false; let shouldConvergeSize = false; let shouldSetCursor = false; let shouldSetLegend = false; function _setSize(width, height) { if (width != self.width || height != self.height) calcSize(width, height); resetYSeries(false); shouldConvergeSize = true; shouldSetSize = true; shouldSetCursor = true; shouldSetLegend = true; commit(); } function calcSize(width, height) { // log("calcSize()", arguments); self.width = fullWidCss = plotWidCss = width; self.height = fullHgtCss = plotHgtCss = height; plotLftCss = plotTopCss = 0; calcPlotRect(); calcAxesRects(); let bb = self.bbox; plotLft = bb.left = incrRound(plotLftCss * pxRatio, 0.5); plotTop = bb.top = incrRound(plotTopCss * pxRatio, 0.5); plotWid = bb.width = incrRound(plotWidCss * pxRatio, 0.5); plotHgt = bb.height = incrRound(plotHgtCss * pxRatio, 0.5); // updOriDims(); } function convergeSize() { let converged = false; let cycleNum = 0; while (!converged) { cycleNum++; let axesConverged = axesCalc(cycleNum); let paddingConverged = paddingCalc(cycleNum); converged = axesConverged && paddingConverged; if (!converged) { calcSize(self.width, self.height); shouldSetSize = true; } } } function setSize({width, height}) { _setSize(width, height); } self.setSize = setSize; // accumulate axis offsets, reduce canvas width function calcPlotRect() { // easements for edge labels let hasTopAxis = false; let hasBtmAxis = false; let hasRgtAxis = false; let hasLftAxis = false; axes.forEach((axis, i) => { if (axis.show && axis._show) { let {side, _size} = axis; let isVt = side % 2; let labelSize = axis.labelSize = (axis.label != null ? (axis.labelSize || 30) : 0); let fullSize = _size + labelSize; if (fullSize > 0) { if (isVt) { plotWidCss -= fullSize; if (side == 3) { plotLftCss += fullSize; hasLftAxis = true; } else hasRgtAxis = true; } else { plotHgtCss -= fullSize; if (side == 0) { plotTopCss += fullSize; hasTopAxis = true; } else hasBtmAxis = true; } } } }); sidesWithAxes[0] = hasTopAxis; sidesWithAxes[1] = hasRgtAxis; sidesWithAxes[2] = hasBtmAxis; sidesWithAxes[3] = hasLftAxis; // hz padding plotWidCss -= _padding[1] + _padding[3]; plotLftCss += _padding[3]; // vt padding plotHgtCss -= _padding[2] + _padding[0]; plotTopCss += _padding[0]; } function calcAxesRects() { // will accum + let off1 = plotLftCss + plotWidCss; let off2 = plotTopCss + plotHgtCss; // will accum - let off3 = plotLftCss; let off0 = plotTopCss; function incrOffset(side, size) { switch (side) { case 1: off1 += size; return off1 - size; case 2: off2 += size; return off2 - size; case 3: off3 -= size; return off3 + size; case 0: off0 -= size; return off0 + size; } } axes.forEach((axis, i) => { if (axis.show && axis._show) { let side = axis.side; axis._pos = incrOffset(side, axis._size); if (axis.label != null) axis._lpos = incrOffset(side, axis.labelSize); } }); } const cursor = (self.cursor = assign({}, cursorOpts, opts.cursor)); { cursor._lock = false; let points = cursor.points; points.show = fnOrSelf(points.show); points.size = fnOrSelf(points.size); points.stroke = fnOrSelf(points.stroke); points.width = fnOrSelf(points.width); points.fill = fnOrSelf(points.fill); } const focus = self.focus = assign({}, opts.focus || {alpha: 0.3}, cursor.focus); const cursorFocus = focus.prox >= 0; // series-intersection markers let cursorPts = [null]; function initCursorPt(s, si) { if (si > 0) { let pt = cursor.points.show(self, si); if (pt) { addClass(pt, CURSOR_PT); addClass(pt, s.class); trans(pt, -10, -10, plotWidCss, plotHgtCss); over.insertBefore(pt, cursorPts[si]); return pt; } } } function initSeries(s, i) { let isTime = scales[s.scale].time; let sv = s.value; s.value = isTime ? (isStr(sv) ? timeSeriesVal(_tzDate, timeSeriesStamp(sv, _fmtDate)) : sv || _timeSeriesVal) : sv || numSeriesVal; s.label = s.label || (isTime ? timeSeriesLabel : numSeriesLabel); if (i > 0) { s.width = s.width == null ? 1 : s.width; s.paths = s.paths || linearPath || retNull; s.fillTo = fnOrSelf(s.fillTo || seriesFillTo); s.stroke = fnOrSelf(s.stroke || null); s.fill = fnOrSelf(s.fill || null); s._stroke = s._fill = s._paths = null; let _ptDia = ptDia(s.width, 1); let points = s.points = assign({}, { size: _ptDia, width: max(1, _ptDia * .2), stroke: s.stroke, space: _ptDia * 2, _stroke: null, _fill: null, }, s.points); points.show = fnOrSelf(points.show); points.fill = fnOrSelf(points.fill); points.stroke = fnOrSelf(points.stroke); } if (showLegend) legendRows.splice(i, 0, initLegendRow(s, i)); if ( cursor.show) { let pt = initCursorPt(s, i); pt && cursorPts.splice(i, 0, pt); } } function addSeries(opts, si) { si = si == null ? series.length : si; opts = setDefault(opts, si, xSeriesOpts, ySeriesOpts); series.splice(si, 0, opts); initSeries(series[si], si); } self.addSeries = addSeries; function delSeries(i) { series.splice(i, 1); showLegend && legendRows.splice(i, 1)[0][0].parentNode.remove(); cursorPts.length > 1 && cursorPts.splice(i, 1)[0].remove(); // TODO: de-init no-longer-needed scales? } self.delSeries = delSeries; series.forEach(initSeries); const sidesWithAxes = [false, false, false, false]; function initAxis(axis, i) { axis._show = axis.show; if (axis.show) { let isVt = axis.side % 2; let sc = scales[axis.scale]; // this can occur if all series specify non-default scales if (sc == null) { axis.scale = isVt ? series[1].scale : xScaleKey; sc = scales[axis.scale]; } // also set defaults for incrs & values based on axis distr let isTime = sc.time; axis.size = fnOrSelf(axis.size); axis.space = fnOrSelf(axis.space); axis.rotate = fnOrSelf(axis.rotate); axis.incrs = fnOrSelf(axis.incrs || ( sc.distr == 2 ? wholeIncrs : (isTime ? (ms == 1 ? timeIncrsMs : timeIncrsS) : numIncrs))); axis.splits = fnOrSelf(axis.splits || (isTime && sc.distr == 1 ? _timeAxisSplits : sc.distr == 3 ? logAxisSplits : numAxisSplits)); axis.stroke = fnOrSelf(axis.stroke); axis.grid.stroke = fnOrSelf(axis.grid.stroke); axis.ticks.stroke = fnOrSelf(axis.ticks.stroke); let av = axis.values; axis.values = ( isTime ? ( isArr(av) ? timeAxisVals(_tzDate, timeAxisStamps(av, _fmtDate)) : isStr(av) ? timeAxisVal(_tzDate, av) : av || _timeAxisVals ) : av || numAxisVals ); axis.filter = fnOrSelf(axis.filter || ( sc.distr == 3 ? logAxisValsFilt : retArg1)); axis.font = pxRatioFont(axis.font); axis.labelFont = pxRatioFont(axis.labelFont); axis._size = axis.size(self, null, i, 0); axis._space = axis._rotate = axis._incrs = axis._found = // foundIncrSpace axis._splits = axis._values = null; if (axis._size > 0) sidesWithAxes[i] = true; } } // set axis defaults axes.forEach(initAxis); function autoPadSide(self, side, sidesWithAxes, cycleNum) { let [hasTopAxis, hasRgtAxis, hasBtmAxis, hasLftAxis] = sidesWithAxes; let ori = side % 2; let size = 0; if (ori == 0 && (hasLftAxis || hasRgtAxis)) size = (side == 0 && !hasTopAxis || side == 2 && !hasBtmAxis ? round(xAxisOpts.size / 3) : 0); if (ori == 1 && (hasTopAxis || hasBtmAxis)) size = (side == 1 && !hasRgtAxis || side == 3 && !hasLftAxis ? round(yAxisOpts.size / 2) : 0); return size; } const padding = self.padding = (opts.padding || [autoPadSide,autoPadSide,autoPadSide,autoPadSide]).map(p => fnOrSelf(ifNull(p, autoPadSide))); const _padding = self._padding = padding.map((p, i) => p(self, i, sidesWithAxes, 0)); let dataLen; // rendered data window let i0 = null; let i1 = null; const idxs = series[0].idxs; let data0 = null; let viaAutoScaleX = false; function setData(_data, _resetScales) { _data = _data || []; _data[0] = _data[0] || []; self.data = _data; data = _data.slice(); data0 = data[0]; dataLen = data0.length; if (xScaleDistr == 2) data[0] = data0.map((v, i) => i); self._data = data; resetYSeries(true); fire("setData"); if (_resetScales !== false) { let xsc = scaleX; if (xsc.auto(self, viaAutoScaleX)) autoScaleX(); else _setScale(xScaleKey, xsc.min, xsc.max); shouldSetCursor = true; shouldSetLegend = true; commit(); } } self.setData = setData; function autoScaleX() { viaAutoScaleX = true; let _min, _max; if (dataLen > 0) { i0 = idxs[0] = 0; i1 = idxs[1] = dataLen - 1; _min = data[0][i0]; _max = data[0][i1]; if (xScaleDistr == 2) { _min = i0; _max = i1; } else if (dataLen == 1) { if (xScaleDistr == 3) [_min, _max] = rangeLog(_min, _min, scaleX.log, false); else if (scaleX.time) _max = _min + 86400 / ms; else [_min, _max] = rangeNum(_min, _max, 0.1, true); } } else { i0 = idxs[0] = _min = null; i1 = idxs[1] = _max = null; } _setScale(xScaleKey, _min, _max); } function setCtxStyle(stroke, width, dash, cap, fill) { ctx.strokeStyle = stroke || transparent; ctx.lineWidth = width; ctx.lineJoin = "round"; ctx.lineCap = cap || "butt"; // (‿|‿) ctx.setLineDash(dash || []); ctx.fillStyle = fill || transparent; } function setScales() { // log("setScales()", arguments); // wip scales let wipScales = copy(scales); for (let k in wipScales) { let wsc = wipScales[k]; let psc = pendScales[k]; if (psc != null && psc.min != null) { assign(wsc, psc); // explicitly setting the x-scale invalidates everything (acts as redraw) if (k == xScaleKey) resetYSeries(true); } else if (k != xScaleKey) { if (dataLen == 0 && wsc.from == null) { let minMax = wsc.range(self, null, null, k); wsc.min = minMax[0]; wsc.max = minMax[1]; } else { wsc.min = inf; wsc.max = -inf; } } } if (dataLen > 0) { // pre-range y-scales from y series' data values series.forEach((s, i) => { let k = s.scale; let wsc = wipScales[k]; let psc = pendScales[k]; if (i == 0) { let minMax = wsc.range(self, wsc.min, wsc.max, k); wsc.min = minMax[0]; wsc.max = minMax[1]; i0 = closestIdx(wsc.min, data[0]); i1 = closestIdx(wsc.max, data[0]); // closest indices can be outside of view if (data[0][i0] < wsc.min) i0++; if (data[0][i1] > wsc.max) i1--; s.min = data0[i0]; s.max = data0[i1]; } else if (s.show && s.auto && wsc.auto(self, viaAutoScaleX) && (psc == null || psc.min == null)) { // only run getMinMax() for invalidated series data, else reuse let minMax = s.min == null ? (wsc.distr == 3 ? getMinMaxLog(data[i], i0, i1) : getMinMax(data[i], i0, i1, s.sorted)) : [s.min, s.max]; // initial min/max wsc.min = min(wsc.min, s.min = minMax[0]); wsc.max = max(wsc.max, s.max = minMax[1]); } s.idxs[0] = i0; s.idxs[1] = i1; }); // range independent scales for (let k in wipScales) { let wsc = wipScales[k]; let psc = pendScales[k]; if (wsc.from == null && (psc == null || psc.min == null)) { let minMax = wsc.range( self, wsc.min == inf ? null : wsc.min, wsc.max == -inf ? null : wsc.max, k ); wsc.min = minMax[0]; wsc.max = minMax[1]; } } } // range dependent scales for (let k in wipScales) { let wsc = wipScales[k]; if (wsc.from != null) { let base = wipScales[wsc.from]; let minMax = wsc.range(self, base.min, base.max, k); wsc.min = minMax[0]; wsc.max = minMax[1]; } } let changed = {}; let anyChanged = false; for (let k in wipScales) { let wsc = wipScales[k]; let sc = scales[k]; if (sc.min != wsc.min || sc.max != wsc.max) { sc.min = wsc.min; sc.max = wsc.max; changed[k] = anyChanged = true; } } if (anyChanged) { // invalidate paths of all series on changed scales series.forEach(s => { if (changed[s.scale]) s._paths = null; }); for (let k in changed) { shouldConvergeSize = true; fire("setScale", k); } if ( cursor.show) shouldSetCursor = true; } for (let k in pendScales) pendScales[k] = null; } // TODO: drawWrap(si, drawPoints) (save, restore, translate, clip) function drawPoints(si) { // log("drawPoints()", arguments); let s = series[si]; let p = s.points; const width = roundDec(p.width * pxRatio, 3); const offset = (width % 2) / 2; const isStroked = p.width > 0; let rad = (p.size - p.width) / 2 * pxRatio; let dia = roundDec(rad * 2, 3); ctx.translate(offset, offset); ctx.save(); ctx.beginPath(); ctx.rect( plotLft - dia, plotTop - dia, plotWid + dia * 2, plotHgt + dia * 2, ); ctx.clip(); ctx.globalAlpha = s.alpha; const path = new Path2D(); const scaleY = scales[s.scale]; let xDim, xOff, yDim, yOff; if (scaleX.ori == 0) { xDim = plotWid; xOff = plotLft; yDim = plotHgt; yOff = plotTop; } else { xDim = plotHgt; xOff = plotTop; yDim = plotWid; yOff = plotLft; } for (let pi = i0; pi <= i1; pi++) { if (data[si][pi] != null) { let x = round(valToPosX(data[0][pi], scaleX, xDim, xOff)); let y = round(valToPosY(data[si][pi], scaleY, yDim, yOff)); moveTo(path, x + rad, y); arc(path, x, y, rad, 0, PI * 2); } } const _stroke = p._stroke = p.stroke(self, si); const _fill = p._fill = p.fill(self, si); setCtxStyle( _stroke, width, p.dash, p.cap, _fill || (isStroked ? "#fff" : s._stroke), ); ctx.fill(path); isStroked && ctx.stroke(path); ctx.globalAlpha = 1; ctx.restore(); ctx.translate(-offset, -offset); } // grabs the nearest indices with y data outside of x-scale limits function getOuterIdxs(ydata) { let _i0 = clamp(i0 - 1, 0, dataLen - 1); let _i1 = clamp(i1 + 1, 0, dataLen - 1); while (ydata[_i0] == null && _i0 > 0) _i0--; while (ydata[_i1] == null && _i1 < dataLen - 1) _i1++; return [_i0, _i1]; } function drawSeries() { if (dataLen > 0) { series.forEach((s, i) => { if (i > 0 && s.show && s._paths == null) { let _idxs = getOuterIdxs(data[i]); s._paths = s.paths(self, i, _idxs[0], _idxs[1]); } }); series.forEach((s, i) => { if (i > 0 && s.show) { if (s._paths) drawPath(i); if (s.points.show(self, i, i0, i1)) drawPoints(i); fire("drawSeries", i); } }); } } function drawPath(si) { const s = series[si]; const { stroke, fill, clip } = s._paths; const width = roundDec(s.width * pxRatio, 3); const offset = (width % 2) / 2; const _stroke = s._stroke = s.stroke(self, si); const _fill = s._fill = s.fill(self, si); setCtxStyle(_stroke, width, s.dash, s.cap, _fill); ctx.globalAlpha = s.alpha; ctx.translate(offset, offset); ctx.save(); let lft = plotLft, top = plotTop, wid = plotWid, hgt = plotHgt; let halfWid = width * pxRatio / 2; if (s.min == 0) hgt += halfWid; if (s.max == 0) { top -= halfWid; hgt += halfWid; } ctx.beginPath(); ctx.rect(lft, top, wid, hgt); ctx.clip(); clip && ctx.clip(clip); let isUpperEdge = fillBands(si, _fill); !isUpperEdge && _fill && fill && ctx.fill(fill); width && _stroke && stroke && ctx.stroke(stroke); ctx.restore(); ctx.translate(-offset, -offset); ctx.globalAlpha = 1; } function fillBands(si, seriesFill) { let isUpperEdge = false; let s = series[si]; // for all bands where this series is the top edge, create upwards clips using the bottom edges // and apply clips + fill with band fill or dfltFill bands.forEach((b, bi) => { if (b.series[0] == si) { isUpperEdge = true; let lowerEdge = series[b.series[1]]; let clip = (lowerEdge._paths || EMPTY_OBJ).band; if (lowerEdge.show && clip) { ctx.save(); setCtxStyle(null, null, null, null, b.fill(self, bi) || seriesFill); ctx.clip(clip); ctx.fill(s._paths.fill); ctx.restore(); } } }); return isUpperEdge; } function getIncrSpace(axisIdx, min, max, fullDim) { let axis = axes[axisIdx]; let incrSpace; if (fullDim <= 0) incrSpace = [0, 0]; else { let minSpace = axis._space = axis.space(self, axisIdx, min, max, fullDim); let incrs = axis._incrs = axis.incrs(self, axisIdx, min, max, fullDim, minSpace); incrSpace = axis._found = findIncr(min, max, incrs, fullDim, minSpace); } return incrSpace; } function drawOrthoLines(offs, filts, ori, side, pos0, len, width, stroke, dash, cap) { let offset = (width % 2) / 2; ctx.translate(offset, offset); setCtxStyle(stroke, width, dash, cap); ctx.beginPath(); let x0, y0, x1, y1, pos1 = pos0 + (side == 0 || side == 3 ? -len : len); if (ori == 0) { y0 = pos0; y1 = pos1; } else { x0 = pos0; x1 = pos1; } offs.forEach((off, i) => { if (filts[i] == null) return; if (ori == 0) x0 = x1 = off; else y0 = y1 = off; ctx.moveTo(x0, y0); ctx.lineTo(x1, y1); }); ctx.stroke(); ctx.translate(-offset, -offset); } function axesCalc(cycleNum) { // log("axesCalc()", arguments); let converged = true; axes.forEach((axis, i) => { if (!axis.show) return; let scale = scales[axis.scale]; if (scale.min == null) { if (axis._show) { converged = false; axis._show = false; resetYSeries(false); } return; } else { if (!axis._show) { converged = false; axis._show = true; resetYSeries(false); } } let side = axis.side; let ori = side % 2; let {min, max} = scale; // // should this toggle them ._show = false let [_incr, _space] = getIncrSpace(i, min, max, ori == 0 ? plotWidCss : plotHgtCss); if (_space == 0) return; // if we're using index positions, force first tick to match passed index let forceMin = scale.distr == 2; let _splits = axis._splits = axis.splits(self, i, min, max, _incr, _space, forceMin); // tick labels // BOO this assumes a specific data/series let splits = scale.distr == 2 ? _splits.map(i => data0[i]) : _splits; let incr = scale.distr == 2 ? data0[_splits[1]] - data0[_splits[0]] : _incr; let values = axis._values = axis.values(self, axis.filter(self, splits, i, _space, incr), i, _space, incr); // rotating of labels only supported on bottom x axis axis._rotate = side == 2 ? axis.rotate(self, values, i, _space) : 0; let oldSize = axis._size; axis._size = ceil(axis.size(self, values, i, cycleNum)); if (oldSize != null && axis._size != oldSize) // ready && ? converged = false; }); return converged; } function paddingCalc(cycleNum) { let converged = true; padding.forEach((p, i) => { let _p = p(self, i, sidesWithAxes, cycleNum); if (_p != _padding[i]) converged = false; _padding[i] = _p; }); return converged; } function drawAxesGrid() { axes.forEach((axis, i) => { if (!axis.show || !axis._show) return; let scale = scales[axis.scale]; let side = axis.side; let ori = side % 2; let plotDim = ori == 0 ? plotWid : plotHgt; let plotOff = ori == 0 ? plotLft : plotTop; let axisGap = round(axis.gap * pxRatio); let ticks = axis.ticks; let tickSize = ticks.show ? round(ticks.size * pxRatio) : 0; let [_incr, _space] = axis._found; let _splits = axis._splits; // tick labels // BOO this assumes a specific data/series let splits = scale.distr == 2 ? _splits.map(i => data0[i]) : _splits; let incr = scale.distr == 2 ? data0[_splits[1]] - data0[_splits[0]] : _incr; // rotating of labels only supported on bottom x axis let angle = axis._rotate * -PI/180; let basePos = round(axis._pos * pxRatio); let shiftAmt = tickSize + axisGap; let shiftDir = ori == 0 && side == 0 || ori == 1 && side == 3 ? -1 : 1; let finalPos = basePos + shiftAmt * shiftDir; let y = ori == 0 ? finalPos : 0; let x = ori == 1 ? finalPos : 0; ctx.font = axis.font[0]; ctx.fillStyle = axis.stroke(self, i); // rgba? ctx.textAlign = axis.align == 1 ? LEFT : axis.align == 2 ? RIGHT : angle > 0 ? LEFT : angle < 0 ? RIGHT : ori == 0 ? "center" : side == 3 ? RIGHT : LEFT; ctx.textBaseline = angle || ori == 1 ? "middle" : side == 2 ? TOP : BOTTOM; let lineHeight = axis.font[1] * lineMult; let canOffs = _splits.map(val => round(getPos(val, scale, plotDim, plotOff))); axis._values.forEach((val, i) => { if (val == null) return; if (ori == 0) x = canOffs[i]; else y = canOffs[i]; (""+val).split(/\n/gm).forEach((text, j) => { if (angle) { ctx.save(); ctx.translate(x, y + j * lineHeight); ctx.rotate(angle); ctx.fillText(text, 0, 0); ctx.restore(); } else ctx.fillText(text, x, y + j * lineHeight); }); }); // axis label if (axis.label) { ctx.save(); let baseLpos = round(axis._lpos * pxRatio); if (ori == 1) { x = y = 0; ctx.translate( baseLpos, round(plotTop + plotHgt / 2), ); ctx.rotate((side == 3 ? -PI : PI) / 2); } else { x = round(plotLft + plotWid / 2); y = baseLpos; } ctx.font = axis.labelFont[0]; // ctx.fillStyle = axis.labelStroke || hexBlack; // rgba? ctx.textAlign = "center"; ctx.textBaseline = side == 2 ? TOP : BOTTOM; ctx.fillText(axis.label, x, y); ctx.restore(); } // ticks if (ticks.show) { drawOrthoLines( canOffs, ticks.filter(self, splits, i, _space, incr), ori, side, basePos, tickSize, roundDec(ticks.width * pxRatio, 3), ticks.stroke(self, i), ticks.dash, ticks.cap, ); } // grid let grid = axis.grid; if (grid.show) { drawOrthoLines( canOffs, grid.filter(self, splits, i, _space, incr), ori, ori == 0 ? 2 : 1, ori == 0 ? plotTop : plotLft, ori == 0 ? plotHgt : plotWid, roundDec(grid.width * pxRatio, 3), grid.stroke(self, i), grid.dash, grid.cap, ); } }); fire("drawAxes"); } function resetYSeries(minMax) { // log("resetYSeries()", arguments); series.forEach((s, i) => { if (i > 0) { s._paths = null; if (minMax) { s.min = null; s.max = null; } } }); } let queuedCommit = false; function commit() { if (!queuedCommit) { microTask(_commit); queuedCommit = true; } } function _commit() { // log("_commit()", arguments); if (shouldSetScales) { setScales(); shouldSetScales = false; } if (shouldConvergeSize) { convergeSize(); shouldConvergeSize = false; } if (shouldSetSize) { setStylePx(under, LEFT, plotLftCss); setStylePx(under, TOP, plotTopCss); setStylePx(under, WIDTH, plotWidCss); setStylePx(under, HEIGHT, plotHgtCss); setStylePx(over, LEFT, plotLftCss); setStylePx(over, TOP, plotTopCss); setStylePx(over, WIDTH, plotWidCss); setStylePx(over, HEIGHT, plotHgtCss); setStylePx(wrap, WIDTH, fullWidCss); setStylePx(wrap, HEIGHT, fullHgtCss); can.width = round(fullWidCss * pxRatio); can.height = round(fullHgtCss * pxRatio); syncRect(); fire("setSize"); shouldSetSize = false; } // if (shouldSetSelect) { // TODO: update .u-select metrics (if visible) // setStylePx(selectDiv, TOP, select.top = 0); // setStylePx(selectDiv, LEFT, select.left = 0); // setStylePx(selectDiv, WIDTH, select.width = 0); // setStylePx(selectDiv, HEIGHT, select.height = 0); // shouldSetSelect = false; // } if ( cursor.show && shouldSetCursor) { updateCursor(); shouldSetCursor = false; } // if (FEAT_LEGEND && legend.show && legend.live && shouldSetLegend) {} if (fullWidCss > 0 && fullHgtCss > 0) { ctx.clearRect(0, 0, can.width, can.height); fire("drawClear"); drawOrder.forEach(fn => fn()); fire("draw"); } if (!ready) { ready = true; self.status = 1; fire("ready"); } viaAutoScaleX = false; queuedCommit = false; } self.redraw = rebuildPaths => { if (rebuildPaths !== false) _setScale(xScaleKey, scaleX.min, scaleX.max); else commit(); }; // redraw() => setScale('x', scales.x.min, scales.x.max); // explicit, never re-ranged (is this actually true? for x and y) function setScale(key, opts) { let sc = scales[key]; if (sc.from == null) { if (dataLen == 0) { let minMax = sc.range(self, opts.min, opts.max, key); opts.min = minMax[0]; opts.max = minMax[1]; } if (opts.min > opts.max) { let _min = opts.min; opts.min = opts.max; opts.max = _min; } if (dataLen > 1 && opts.min != null && opts.max != null && opts.max - opts.min < 1e-16) return; if (key == xScaleKey) { if (sc.distr == 2 && dataLen > 0) { opts.min = closestIdx(opts.min, data[0]); opts.max = closestIdx(opts.max, data[0]); } } // log("setScale()", arguments); pendScales[key] = opts; shouldSetScales = true; commit(); } } self.setScale = setScale; // INTERACTION let xCursor; let yCursor; let vCursor; let hCursor; // starting position before cursor.move let rawMouseLeft0; let rawMouseTop0; // starting position let mouseLeft0; let mouseTop0; // current position before cursor.move let rawMouseLeft1; let rawMouseTop1; // current position let mouseLeft1; let mouseTop1; let dragging = false; const drag = cursor.drag; let dragX = drag.x; let dragY = drag.y; if ( cursor.show) { if (cursor.x) xCursor = placeDiv(CURSOR_X, over); if (cursor.y) yCursor = placeDiv(CURSOR_Y, over); if (scaleX.ori == 0) { vCursor = xCursor; hCursor = yCursor; } else { vCursor = yCursor; hCursor = xCursor; } mouseLeft1 = cursor.left; mouseTop1 = cursor.top; } const select = self.select = assign({ show: true, over: true, left: 0, width: 0, top: 0, height: 0, }, opts.select); const selectDiv = select.show ? placeDiv(SELECT, select.over ? over : under) : null; function setSelect(opts, _fire) { if (select.show) { for (let prop in opts) setStylePx(selectDiv, prop, select[prop] = opts[prop]); _fire !== false && fire("setSelect"); } } self.setSelect = setSelect; function toggleDOM(i, onOff) { let s = series[i]; let label = showLegend ? legendRows[i][0].parentNode : null; if (s.show) label && remClass(label, OFF); else { label && addClass(label, OFF); cursorPts.length > 1 && trans(cursorPts[i], -10, -10, plotWidCss, plotHgtCss); } } function _setScale(key, min, max) { setScale(key, {min, max}); } function setSeries(i, opts, pub) { // log("setSeries()", arguments); let s = series[i]; // will this cause redundant commit() if both show and focus are set? if (opts.focus != null) setFocus(i); if (opts.show != null) { s.show = opts.show; toggleDOM(i, opts.show); _setScale(s.scale, null, null); commit(); } fire("setSeries", i, opts); pub && sync.pub("setSeries", self, i, opts); } self.setSeries = setSeries; function _alpha(i, value) { series[i].alpha = value; if ( cursor.show && cursorPts[i]) cursorPts[i].style.opacity = value; if ( showLegend && legendRows[i]) legendRows[i][0].parentNode.style.opacity = value; } function _setAlpha(i, value) { _alpha(i, value); } // y-distance let closestDist; let closestSeries; let focusedSeries; const FOCUS_TRUE = {focus: true}; const FOCUS_FALSE = {focus: false}; function setFocus(i) { if (i != focusedSeries) { // log("setFocus()", arguments); series.forEach((s, i2) => { _setAlpha(i2, i == null || i2 == 0 || i2 == i ? 1 : focus.alpha); }); focusedSeries = i; commit(); } } if (showLegend && cursorFocus) { on(mouseleave, legendEl, e => { if (cursor._lock) return; setSeries(null, FOCUS_FALSE, syncOpts.setSeries); updateCursor(); }); } function posToVal(pos, scale) { let sc = scales[scale]; let dim = plotWidCss; if (sc.ori == 1) { dim = plotHgtCss; pos = dim - pos; } if (sc.dir == -1) pos = dim - pos; let _min = sc.min, _max = sc.max, pct = pos / dim; if (sc.distr == 3) { _min = log10(_min); _max = log10(_max); return pow(10, _min + (_max - _min) * pct); } else return _min + (_max - _min) * pct; } function closestIdxFromXpos(pos) { let v = posToVal(pos, xScaleKey); return closestIdx(v, data[0], i0, i1); } self.valToIdx = val => closestIdx(val, data[0]); self.posToIdx = closestIdxFromXpos; self.posToVal = posToVal; self.valToPos = (val, scale, can) => ( scales[scale].ori == 0 ? getHPos(val, scales[scale], can ? plotWid : plotWidCss, can ? plotLft : 0, ) : getVPos(val, scales[scale], can ? plotHgt : plotHgtCss, can ? plotTop : 0, ) ); // defers calling expensive functions function batch(fn) { fn(self); commit(); } self.batch = batch; (self.setCursor = opts => { mouseLeft1 = opts.left; mouseTop1 = opts.top; // assign(cursor, opts); updateCursor(); }); function setSelH(off, dim) { setStylePx(selectDiv, LEFT, select.left = off); setStylePx(selectDiv, WIDTH, select.width = dim); } function setSelV(off, dim) { setStylePx(selectDiv, TOP, select.top = off); setStylePx(selectDiv, HEIGHT, select.height = dim); } let setSelX = scaleX.ori == 0 ? setSelH : setSelV; let setSelY = scaleX.ori == 1 ? setSelH : setSelV; function updateCursor(ts, src) { // ts == null && log("updateCursor()", arguments); rawMouseLeft1 = mouseLeft1; rawMouseTop1 = mouseTop1; [mouseLeft1, mouseTop1] = cursor.move(self, mouseLeft1, mouseTop1); if (cursor.show) { vCursor && trans(vCursor, round(mouseLeft1), 0, plotWidCss, plotHgtCss); hCursor && trans(hCursor, 0, round(mouseTop1), plotWidCss, plotHgtCss); } let idx; // when zooming to an x scale range between datapoints the binary search // for nearest min/max indices results in this condition. cheap hack :D let noDataInRange = i0 > i1; closestDist = inf; // TODO: extract let xDim = scaleX.ori == 0 ? plotWidCss : plotHgtCss; let yDim = scaleX.ori == 1 ? plotWidCss : plotHgtCss; // if cursor hidden, hide points & clear legend vals if (mouseLeft1 < 0 || dataLen == 0 || noDataInRange) { idx = null; for (let i = 0; i < series.length; i++) { if (i > 0) { cursorPts.length > 1 && trans(cursorPts[i], -10, -10, plotWidCss, plotHgtCss); } if (showLegend && legend.live) { if (i == 0 && multiValLegend) continue; for (let j = 0; j < legendRows[i].length; j++) legendRows[i][j].firstChild.nodeValue = '--'; } } if (cursorFocus) setSeries(null, FOCUS_TRUE, syncOpts.setSeries); } else { // let pctY = 1 - (y / rect.height); let mouseXPos = scaleX.ori == 0 ? mouseLeft1 : mouseTop1; let valAtPosX = posToVal(mouseXPos, xScaleKey); idx = closestIdx(valAtPosX, data[0], i0, i1); let xPos = incrRoundUp(valToPosX(data[0][idx], scaleX, xDim, 0), 0.5); for (let i = 0; i < series.length; i++) { let s = series[i]; let idx2 = cursor.dataIdx(self, i, idx, valAtPosX); let xPos2 = idx2 == idx ? xPos : incrRoundUp(valToPosX(data[0][idx2], scaleX, xDim, 0), 0.5); if (i > 0 && s.show) { let valAtIdx = data[i][idx2]; let yPos = valAtIdx == null ? -10 : incrRoundUp(valToPosY(valAtIdx, scales[s.scale], yDim, 0), 0.5); if (yPos > 0) { let dist = abs(yPos - mouseTop1); if (dist <= closestDist) { closestDist = dist; closestSeries = i; } } let hPos, vPos; if (scaleX.ori == 0) { hPos = xPos2; vPos = yPos; } else { hPos = yPos; vPos = xPos2; } cursorPts.length > 1 && trans(cursorPts[i], hPos, vPos, plotWidCss, plotHgtCss); } if (showLegend && legend.live) { if ((idx2 == cursor.idx && !shouldSetLegend) || i == 0 && multiValLegend) continue; let src = i == 0 && xScaleDistr == 2 ? data0 : data[i]; let vals = multiValLegend ? s.values(self, i, idx2) : {_: s.value(self, src[idx2], i, idx2)}; let j = 0; for (let k in vals) legendRows[i][j++].firstChild.nodeValue = vals[k]; } } shouldSetLegend = false; } // nit: cursor.drag.setSelect is assumed always true if (select.show && dragging) { if (src != null) { let [xKey, yKey] = syncOpts.scales; // match the dragX/dragY implicitness/explicitness of src let sdrag = src.cursor.drag; dragX = sdrag._x; dragY = sdrag._y; let { left, top, width, height } = src.select; let sori = src.scales[xKey].ori; let sPosToVal = src.posToVal; let sOff, sDim, sc, a, b; if (xKey) { if (sori == 0) { sOff = left; sDim = width; } else { sOff = top; sDim = height; } sc = scales[xKey]; a = valToPosX(sPosToVal(sOff, xKey), sc, xDim, 0); b = valToPosX(sPosToVal(sOff + sDim, xKey), sc, xDim, 0); setSelX(min(a,b), abs(b-a)); if (!yKey) setSelY(0, yDim); } if (yKey) { if (sori == 1) { sOff = left; sDim = width; } else { sOff = top; sDim = height; } sc = scales[yKey]; a = valToPosY(sPosToVal(sOff, yKey), sc, yDim, 0); b = valToPosY(sPosToVal(sOff + sDim, yKey), sc, yDim, 0); setSelY(min(a,b), abs(b-a)); if (!xKey) setSelX(0, xDim); } } else { let rawDX = abs(rawMouseLeft1 - rawMouseLeft0); let rawDY = abs(rawMouseTop1 - rawMouseTop0); if (scaleX.ori == 1) { let _rawDX = rawDX; rawDX = rawDY; rawDY = _rawDX; } dragX = drag.x && rawDX >= drag.dist; dragY = drag.y && rawDY >= drag.dist; let uni = drag.uni; if (uni != null) { // only calc drag status if they pass the dist thresh if (dragX && dragY) { dragX = rawDX >= uni; dragY = rawDY >= uni; // force unidirectionality when both are under uni limit if (!dragX && !dragY) { if (rawDY > rawDX) dragY = true; else dragX = true; } } } else if (drag.x && drag.y && (dragX || dragY)) // if omni with no uni then both dragX / dragY should be true if either is true dragX = dragY = true; let p0, p1; if (dragX) { if (scaleX.ori == 0) { p0 = mouseLeft0; p1 = mouseLeft1; } else { p0 = mouseTop0; p1 = mouseTop1; } setSelX(min(p0, p1), abs(p1 - p0)); if (!dragY) setSelY(0, yDim); } if (dragY) { if (scaleX.ori == 1) { p0 = mouseLeft0; p1 = mouseLeft1; } else { p0 = mouseTop0; p1 = mouseTop1; } setSelY(min(p0, p1), abs(p1 - p0)); if (!dragX) setSelX(0, xDim); } // the drag didn't pass the dist requirement if (!dragX && !dragY) { setSelX(0, 0); setSelY(0, 0); } } } cursor.idx = idx; cursor.left = mouseLeft1; cursor.top = mouseTop1; drag._x = dragX; drag._y = dragY; // if ts is present, means we're implicitly syncing own cursor if (ts != null) { // this is not technically a "mousemove" event, since it's debounced, rename to setCursor? // since this is internal, we can tweak it later sync.pub(mousemove, self, mouseLeft1, mouseTop1, xDim, yDim, idx); if (cursorFocus) { let o = syncOpts.setSeries; let p = focus.prox; if (focusedSeries == null) { if (closestDist <= p) setSeries(closestSeries, FOCUS_TRUE, o); } else { if (closestDist > p) setSeries(null, FOCUS_TRUE, o); else if (closestSeries != focusedSeries) setSeries(closestSeries, FOCUS_TRUE, o); } } } ready && fire("setCursor"); } let rect = null; function syncRect() { rect = over.getBoundingClientRect(); } function mouseMove(e, src, _l, _t, _w, _h, _i) { if (cursor._lock) return; cacheMouse(e, src, _l, _t, _w, _h, _i, false, e != null); if (e != null) updateCursor(1); else updateCursor(null, src); } function cacheMouse(e, src, _l, _t, _w, _h, _i, initial, snap) { if (e != null) { _l = e.clientX - rect.left; _t = e.clientY - rect.top; } else { if (_l < 0 || _t < 0) { mouseLeft1 = -10; mouseTop1 = -10; return; } let xDim = plotWidCss, yDim = plotHgtCss, _xDim = _w, _yDim = _h, _xPos = _l, _yPos = _t; if (scaleX.ori == 1) { xDim = plotHgtCss; yDim = plotWidCss; } let [xKey, yKey] = syncOpts.scales; if (src.scales[xKey].ori == 1) { _xDim = _h; _yDim = _w; _xPos = _t; _yPos = _l; } if (xKey != null) _l = getPos(src.posToVal(_xPos, xKey), scales[xKey], xDim, 0); else _l = xDim * (_xPos/_xDim); if (yKey != null) _t = getPos(src.posToVal(_yPos, yKey), scales[yKey], yDim, 0); else _t = yDim * (_yPos/_yDim); if (scaleX.ori == 1) { let __l = _l; _l = _t; _t = __l; } } if (snap) { if (_l <= 1 || _l >= plotWidCss - 1) _l = incrRound(_l, plotWidCss); if (_t <= 1 || _t >= plotHgtCss - 1) _t = incrRound(_t, plotHgtCss); } if (initial) { rawMouseLeft0 = _l; rawMouseTop0 = _t; [mouseLeft0, mouseTop0] = cursor.move(self, _l, _t); } else { mouseLeft1 = _l; mouseTop1 = _t; } } function hideSelect() { setSelect({ width: 0, height: 0, }, false); } function mouseDown(e, src, _l, _t, _w, _h, _i) { dragging = true; dragX = dragY = drag._x = drag._y = false; cacheMouse(e, src, _l, _t, _w, _h, _i, true, false); if (e != null) { onMouse(mouseup, doc, mouseUp); sync.pub(mousedown, self, mouseLeft0, mouseTop0, plotWidCss, plotHgtCss, null); } } function mouseUp(e, src, _l, _t, _w, _h, _i) { dragging = drag._x = drag._y = false; cacheMouse(e, src, _l, _t, _w, _h, _i, false, true); let { left, top, width, height } = select; let hasSelect = width > 0 || height > 0; hasSelect && setSelect(select); if (drag.setScale && hasSelect) { // if (syncKey != null) { // dragX = drag.x; // dragY = drag.y; // } let xOff = left, xDim = width, yOff = top, yDim = height; if (scaleX.ori == 1) { xOff = top, xDim = height, yOff = left, yDim = width; } if (dragX) { _setScale(xScaleKey, posToVal(xOff, xScaleKey), posToVal(xOff + xDim, xScaleKey) ); } if (dragY) { for (let k in scales) { let sc = scales[k]; if (k != xScaleKey && sc.from == null && sc.min != inf) { _setScale(k, posToVal(yOff + yDim, k), posToVal(yOff, k) ); } } } hideSelect(); } else if (cursor.lock) { cursor._lock = !cursor._lock; if (!cursor._lock) updateCursor(); } if (e != null) { offMouse(mouseup, doc); sync.pub(mouseup, self, mouseLeft1, mouseTop1, plotWidCss, plotHgtCss, null); } } function mouseLeave(e, src, _l, _t, _w, _h, _i) { if (!cursor._lock) { let _dragging = dragging; if (dragging) { // handle case when mousemove aren't fired all the way to edges by browser let snapH = true; let snapV = true; let snapProx = 10; let dragH, dragV; if (scaleX.ori == 0) { dragH = dragX; dragV = dragY; } else { dragH = dragY; dragV = dragX; } if (dragH && dragV) { // maybe omni corner snap snapH = mouseLeft1 <= snapProx || mouseLeft1 >= plotWidCss - snapProx; snapV = mouseTop1 <= snapProx || mouseTop1 >= plotHgtCss - snapProx; } if (dragH && snapH) mouseLeft1 = mouseLeft1 < mouseLeft0 ? 0 : plotWidCss; if (dragV && snapV) mouseTop1 = mouseTop1 < mouseTop0 ? 0 : plotHgtCss; updateCursor(1); dragging = false; } mouseLeft1 = -10; mouseTop1 = -10; // passing a non-null timestamp to force sync/mousemove event updateCursor(1); if (_dragging) dragging = _dragging; } } function dblClick(e, src, _l, _t, _w, _h, _i) { autoScaleX(); hideSelect(); if (e != null) sync.pub(dblclick, self, mouseLeft1, mouseTop1, plotWidCss, plotHgtCss, null); } // internal pub/sub const events = {}; events.mousedown = mouseDown; events.mousemove = mouseMove; events.mouseup = mouseUp; events.dblclick = dblClick; events["setSeries"] = (e, src, idx, opts) => { setSeries(idx, opts); }; let deb; if ( cursor.show) { onMouse(mousedown, over, mouseDown); onMouse(mousemove, over, mouseMove); onMouse(mouseenter, over, syncRect); onMouse(mouseleave, over, mouseLeave); onMouse(dblclick, over, dblClick); deb = debounce(syncRect, 100); on(resize, win, deb); on(scroll, win, deb); self.syncRect = syncRect; } // external on/off const hooks = self.hooks = opts.hooks || {}; function fire(evName, a1, a2) { if (evName in hooks) { hooks[evName].forEach(fn => { fn.call(null, self, a1, a2); }); } } (opts.plugins || []).forEach(p => { for (let evName in p.hooks) hooks[evName] = (hooks[evName] || []).concat(p.hooks[evName]); }); const syncOpts = assign({ key: null, setSeries: false, scales: [xScaleKey, null] }, cursor.sync); const syncKey = syncOpts.key; const sync = (syncKey != null ? (syncs[syncKey] = syncs[syncKey] || _sync()) : _sync()); sync.sub(self); function pub(type, src, x, y, w, h, i) { events[type](null, src, x, y, w, h, i); } (self.pub = pub); function destroy() { sync.unsub(self); off(resize, win, deb); off(scroll, win, deb); root.remove(); fire("destroy"); } self.destroy = destroy; function _init() { fire("init", opts, data); setData(data || opts.data, false); if (pendScales[xScaleKey]) setScale(xScaleKey, pendScales[xScaleKey]); else autoScaleX(); _setSize(opts.width, opts.height); setSelect(select, false); } if (then) { if (then instanceof HTMLElement) { then.appendChild(root); _init(); } else then(self, _init); } else _init(); return self; } uPlot.assign = assign; uPlot.fmtNum = fmtNum; uPlot.rangeNum = rangeNum; uPlot.rangeLog = rangeLog; uPlot.orient = orient; { uPlot.join = join; } { uPlot.fmtDate = fmtDate; uPlot.tzDate = tzDate; } { uPlot.addGap = addGap; uPlot.clipGaps = clipGaps; let paths = uPlot.paths = {}; (paths.linear = linear); (paths.spline = spline); (paths.stepped = stepped); (paths.bars = bars); } module.exports = uPlot;